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ABSTRACT

Multigrid methods have been traditionally applied to the solution of certain Partial

Differential Equations. However, applications in control theory, optimization, pattern

recognition, computational tomography and particle physics are beginning to appear.

This thesis analyzes the application of multigrid methodology to optimization

problems. The work is centered on networks. Transportation problems are chosen

frequently as reference because they have been the object of some multigrid research. The

goal is to establish a basis for development of multigrid-based algorithms.

Optimality conditions in linear programming and networks are reviewed, and a

compilation of various multilevel approaches in optimization is presented. Emphasis is on

the recent scaling techniques; they add some special insights into solving large network

problems efficiently using progressive level of detail. An analysis of the difficulties that

these problems present to the multigrid approach reveals that perhaps some abstraction

is appropriate when interpreting multigrid components applied to optimization problems

(in particular, the concept of grid itself). The idea of implicit ordering is developed and

associated with the effectiveness of the multigrid method. These concepts are applied to

identify problems that can be solved using multigrid. Finally, suggestions for the

development of future multigrid-based algorithms are provided.
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EXECUTIVE SUMMARY

Multi-level processes are found in many military, government and private sector

activities. In many cases the multi-level processes are easy to observe because they are

inherent in the activity itself. For example, in the shipment of goods from factories to

warehouses and then to customers the multi-level nature of the distribution is obvious. In

other cases the multi-level processes are in the structure or environment in which the

activity is developed. Fur example, military personnel assignment has multiple levels

because of way that jobs are assigned according to specialties or ranks. In still other

cases multilevels are introduced where none is inherent in order to break the problem into

parts that may be solved more easily than the original. Multilevel problems are virtually

all very large and it is usually necessary to develop solution techniques that exploit special

structure associated with the multilevel processes in order to effectively construct

solutions.

Multigrid methods are a multilevel approach to solving problems. The basic idea is

to sample problems at different levels of detail so that their simpler representation on

coarser grids can reduce computational effort. They seem to be particularly effective when

there is some inherent hierarchical structure or when a hierarchical structure can be

induced on the problem. In addition to hierarchical structure there are other problem

characteristics that are critical to the success of multigrid methods.

Traditionally, multigrid methods have been applied to the solution of certain Partial

Differential Equations, but they are much more widely applicable than just to the numerical

solution of differential and integral equations. Applications in such diverse areas as control

xi



The present thesis analyzes the possibilities of applying the multigrid methods to

solve optimization problems. The work is centered on network problems, particularly

transportation problems. The reason for this choice is that the efficient solution of large

network problems is important in many military and industrial activities, and also there has

been research on the application of multigrid methods to transportation problems. The

thesis does not actually solve any network problem. The goal is to develop a basis for

future development of algorithms that take advantage of the powerful characteristics of

multigrid to solve large networks and, ultimately, more general optimization problems.

This thesis provides an overview of the basic aspects of optimality in linear

programming and networks, and a compilation of various multilevel approaches in

optimization. Special emphasis is made on the recent scaling techniques; they add some

special insights into the task of solving large network problems in a progressive level of

detail and are very efficient computationally. An analysis of the difficulties that those

problems present to the multigrid approach reveals that perhaps a high level of abstraction

is appropriate when interpreting the application of multigrid components to optimization

problems. New ideas to interpret the concept of grid are proposed, and the idea of implicit

ordering is associated with the effectiveness of the multigrid method. Finally, these

concepts are applied to identify problems to be solved using multigrid. The conclusions

provide some new insights and give some suggestions for the development of future

multigrid-based algorithms oriented to the solution of optimization problems.
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I. INTRODUCTION

A. MOTIVATION

Multilevel algorithms have emerged as the most efficient algorithms for solving

certain very large algebraic systems arising from discretizing partial differential boundary

value problems. Multilevel approaches have naturally emerged in many branches of

computer technology, as in the structured organization of computer hardware, the top-

down structured design of software, the pyramidal data structures (trees, heaps, etc.) and

many of the most efficient algorithms in computer science, such as fast sorting and others

in the "divide and conquer" class of algorithms. The multigrid approach adds some other

characteristics to establish a powerful and general framework for the solution of a wide

class of problems. This research explores the suitability of such methods to the solution

of optimization problems.

B. BASIC CONCEPTS

In the numerical solution of differential equations, each variable is represented by

a vector of real values. This means that the solution of the problem can be regarded as

an array of vectors, each corresponding to an individual variable. In the simpler one-

dimensional case, the solution of the problem is a single vector, which we will refer to as

the solution vector.



Considering the one-dimensional case (Hackbusch, 1980), relaxation methods, i.e.

Jacobi and Gauss-Seidel iterations, begin with an initial guess of a solution. They then

proceed to improve the current approximation by updating steps (iterations). If we could

represent the error at each step, it would be a vector of the same number of components

as the solution vector. It is referred to as the error vector. At the beginning of the

iterative process, the error vector is somewhat arbitrarily constructed. The arbitrariness

is related to the choice of a first guess taken as initial solution. Some problems present

special behaviors of the error vector along the iteration steps. We are interested in the

kind of problems in which the error can be represented by a linear combination of

frequency components (i.e. Fourier nodes). Moreover, we are interested in errors that

through the iterative process are "smoothed" to end up being formed by only long waves.

(At this point, it suffices to say that long waves are those with relatively low frequency

components). It is hard to detect such structure in the error vector, and even harder to

know about its evolution. In fact, to detect this structure, we need to know the error itself,

and knowing the .error is equivalent to having solved the problem. Again, it is the evolution

of the error that attracts our attention to these problems, because it makes them suitable

for special solution techniques, known as multigrid techniques.

In these problems the error vector, in general, will consist of high frequency

oscillatory components, medium frequency components, and low frequency smooth

components. Conventional relaxation methods, as those mentioned above, reduce the

oscillatory components first. When the remaining error's spectrum is formed essentially

by smooth components a progressive slowness in the convergence to the solution is

observed. At this point, the iterative processes become extremely slow.
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The multigrid approach is to treat each component of the error on the environment

(grid) where that component appears to be "oscillatoryf.

The multigrid approach takes advantage of the following facts:

- Smooth components of the error are well represented on coarser grids. This

facilitates solving the problem on a "simpler" domain;

When transferring smooth components into the next domain (coarser grid),

moderately-smooth components of the error become oscillatory components

of the error in the new domain. This fact speeds up the iterative process since

oscillatory components are reduced faster.

The complementary use of these two ideas constitutes the basis of Oir "nultigrid

method. Both of them contribute to accelerate convergence and, with the help of some

intuition, explain the success of that approach.

Two main tools are used in approaching the solution of problems in multigrid

(Briggs, 1987):

(a) Use of coarser grids to obtain initial guesses for the problem on finer grids

(nested Iteration);

(b) Use of approximate solution in fine grids to obtain a residual, defined as the

difference between the true and approximated right hand side vectors. The

idea is to relax until the error is smooth, then transfer the residual equation to

coarser grids to relax on the error, and finally correct the approximate solution

in the finer grid after interpolating the error. (coarse grid correction).

3



C. INTERPRETATION OF THE IDEA IN OPTIMIZATION PROBLEMS

The above ideas suggest that a parallel approach could be implemented in solving

optimization problems. The basic ideas should be:

(a) Nested Iteration.- Form a reduced problem at the simplest possible level.

Solve, and use the solution to obtain a good initial guess to the extended

problem at the next level. Proceed in this fashion until the finest level is

reached.

(b) Coarse Grid Correction.- Find an initial guess to the problem, that we will call

the "complete problem*. Work on this guess to obtain an improvement. Iterate

until a point of little advance is reached. Then shift to a "reduced problemn,

derived from the complete problem. Solve the reduced problem using a similar

(nested) approach. Use this result to improve the current solution to the

complete problem.

D. OBJECTIVE AND CONTENTS OF THE THESIS

One goal of this thesis is to investigate the advances made so far in this field, in

particular, the application of the multigrid philosophy to the solution of long transportation

problems. Previous work shows some success in obtaining approximate solutions to the

problem, but on large problems the results are not very promising. This research steps

back to a more general and abstract level in an attempt to find characteristics helping to

define problems amenable to multigrid approach. Also, some of the essential concepts

characterizing multigrid are generalized to a higher level of abstraction in order to seek

new interpretations for the multigrid techniques when considered in the special context of

optimization.

4



It is an objective of this thesis to gather what we could call a set of fundamental

•building blockss. Multigrid is not a developed technique in optimization. Nested iteration

and coarse grid correction require special handling in an optimization environment. We

wish to review some of those optimization techniques already available that can be

exploited, particularly those likely to be more adaptable to a multigrid use. Multilevel

methods are a logical choice, so we examine and include them in the muftigrid context.

An important feature of real-life network problems, including transportation problems,

is the arc capacity. In the multigrid context, capacity has a special importance, since it

tends to make the behavior of networks less smooth in response to iterative processes,

causing multigrid implementation to be more problematic. We want to pay special attention

to arc capacity and, whenever possible, include it as a factor in the problem design. This

is an aspect that has not been considered before.

Finally, this work will try to open the interpretation of the multigrid idea in

optimization to possible ways of restriction, other than the "traditional" node aggregation.

This involves an abstraction of the concept of "grido. Also, possible ways to improve the

relaxation process are suggested using the mentioned building blocks.

Chapter II is a description of the transportation problem. This type of problem has

been historically selected to investigate new algorithms. This is mainly due to its simplicity

in structure. In this chapter we present the transportation problem as a member of the

class of minimum cost problems. Duality, a key concept in optimization theory that will be

found along the pages to follow, is introduced. Specifically, we study the meaning of the

dual associated to the transportation problem.

5



Although the long transportation problem Is our selected problem type, a general

approach to the solution of optimization (network) problems is kept in mind at all time.

Occasionally, we will be willing to treat a more general type of problem.

The optimality conditions in networks are the basic set of tools which are constantly

invoked in this work. It is natural then to devote some space to set up these conditions

in networks. That is done in Chapter III, where it is preceded by a short summary of the

more general linear programming optimality conditions.

Chapters IV, V, and VI describe the above mentioned building blocks. These

chapters describe with some detail the decomposition methodology, the

aggregation/disaggregation method, and the more recent scaling techniques, respectively.

We describe them and give some examples. This is especially detailed in the chapter

devoted to scaling. This last technique, dated 1972 (Edmonds and Karp), has been more

extensively researched in recent years (Bertsekas, 1979; Bland and Jensen, 1992, Ahuja

et al, 1993), and appears to be promising.

Chapter VII studies the perturbation method. It is an application of the more general

perturbation philosophy to solving linear programming problems.

In Chapter VIII some further work in the multigrid concept is described. A certain

familiarity with the method is assumed on the part of the reader. This work adds some

insights to the comprehension of the multigrid methodology.

Chapter IX develops some ideas to identify the type of optimization problems that

could be expected to be solved using multigrid. A short overview of previous work on the

topic is presented, with conclusions about critical aspects of the implementation of

multigrid algorithms in solving optimization problems, and suggestions for further research.

6



II. OPTIMALITY CONDITIONS

A. INTRODUCTION

In this chapter we present the Karush-Kuhn-Tucker (KKT) optimality conditions.

These are necessary and sufficient for linear programming problems. The case of equality

constraints is specifically considered. A key result in establishing the KKT conditions is the

lemma presented in section B. Finally, in section D we specialize the optimality conditions

to the case of networks.

A convex cone generated by the vectors v"), v(), ... , vP) is (Owen, 1982) the set

of all vectors v such that

P

V = ;-kV W

k-1

for some nonnegative X., X2, :.., X.

NOTE (Special notation): In this chapter we will use dot-notation to refer to sets defined

using two indices, in the following way: to group elements indexed (ij), with a constant

value of i, and all possible values for j we use the special notation 1.' (the dot is part of

the notation). So, the ith row of a matrix A is denoted A., while the jth column of

A is denoted as A1 .

7



B. LEMMA (Faks' I*nim):

One and only one of the following two systems has a solution:

System 1: w A = c, w > 0

System 2: Ax > 0, cx ( 0 (11.1)

where A is a given m x n matrix and c is a given n-vector (a row vector).

(NOTE: There are other versions of the lemma; this is taken from Bazaraa, Jarvis and

Sherali, 1990). We do not include a proof, but a geometric interpretation.

Geometric Interpretation: System I has a solution if and only if c belongs to the convex

cone generated by the rows of A. On the other side, system 2 has a solution if and only

if the vector c does not belong t, the cone generated by the rows of A.

C. KARUSH-KUHN-TUCKER (KKT) OPTIMALUTY CONDITIONS

We take this version of the KKT ciptimality conditions from Bazaraa, Jarvis and

Sherali, 1990. Some definitions are required.

A nonempty set S in 9t is said to be convex if the line se.inent joining any two

points in the set also belongs to the set. This is expressed as

.x + (1-.)y e S, forall 0•;X.<1 and all x,y e S

A real-valued function f defined on such set S is said to be a convex

function if for every pair x, y e S and for every real number X contained in the

open interval (0,1), the following holds

f(Q.x + (1- X)y) < X.f(x) + (1- X)f(y)

8



Let i be a member of a convex set S. A nonzero vector d is called a feibie

d/re/tion at x if there exists a 8 > 0, such that for all X in the open interval (0, 8), the

point i + X.d is in the set S.

A nonzero vector d is called an Improving fealble direction at 7 if there

exists a 8 > 0, such that for all X. in the open interval (0, 8):

(I) x + X d is a member of the set S;

(ii) c (x + X d ) < c x (for minimization problems, a descent direction).

Note that in linear programming problems, the cost vector c represents the gradient

of the objective function. Condition (ii) in this case, is equivalent to c d < 0.

Definition: We say that a constraint is binding at 7 if it Is satisfied with equality

at that point.

Now consider the linear programming problem.

min c x

s.t. Ax > b

x a 0

For the above linear programming problem let x be a feasible solution and G the

submatrix of A formed by the binding constraints at x. The rows of G can be one of the

following two types:

(a) Rows of A, of the form A4 such that A,.x = b, ; the index set for these

constraints will be denoted as I;

9



(b) Rows formed by zeros, except for a '1' in the jth position. The index set for

these will be called J. These constraints belong to the group of nonnegativity

constraints in the linear programming problem.

In other words,

I= 1: A.b,I

J I J: xI=0J

Now suppose that x is an optimal solution. Then there cannot be at i any

improving feasible direction d. Thus, (i) and (ii) cannot be satisfied simultaneously for any

direction d. So, it cannot be that cd < 0 and G (x + X d) > g.

Let g be the vector defined by the binding constraints G x = g. T h e s e c o n d

inequality above can be expanded as

Gi + X Gd > g, which is equivalent to Gd > 0.

Since there cannot be a direction d such that cd < 0 and G d > 0 hold

simultaneously, we can make use of Farkas' Lemma to state that there exists a vector

u_0 such that uG=c.

Let us write such vector as u = (ai, P3), where

a (u: ie l)

(u,: j eJ)

then the conditions u > 0 and uG = c can be rewritten as

Sa, + E c (1.2)
lel lei

10



with

Mi ? 0, ijE and o o, jej (11.3)

These are the KKT conditions for optimality. The interpretation is: i is an optimal

solution to the linear program above if and only if the objective gradient c lies in the

convex cone generated by the gradients of the binding constraints at 7.

These conditions are usually written in the following form. Define the vectors

P Ot(lU21 ....49.) > 0
0 ;(01,I02, .... PJ 2:0

their components having value zero for those indices not belonging to I, J, respectively

(recall that the lengths, m and n, are precisely the number of constraints and the number

of variables of the problem). Those are indices corresponding to the nonbinding

constraints. Then the KKT conditions hold for vectors (x, a, 13) if there exists a solution to

the system

Ax > b, x 0 (11.4)

A + ,, P3 =0 (11.5)

a(Az - b) = O, px- (=.6)

The first condition (primal feasibility) states that the candidate point must be

feasible. Condition (11.5) is the dual feasibility. Here a and 13 are the Lagranglan
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multipliers or dual vadrab.s. Finally, the last condition is the compismentry s/acknts

condition.

The complementary slackness condition is the expression of the so called

Complementary Slackness Theorem, stating that if a pair of primal and dual solutions

are feasible and satisfy the complementary slackness condition, they are optimal.

An immediate consequence of the above is the following:

Corollary: The following two statements are equivalent

(i) i is an optimal solution for the primal problem and 0 is an optimal solution

for the dual problem;

(ii) (i, 0), is a feasible solution for the pair of problems, primal and dual.

In the case of equality constraints, which concerns the transportation problem, we

have:

rmin cx

s.t. Ax = b

x>O

We can transform the equality into a logical combination of two inequalities,

(Ax = b) (Ax _ b) and (-Ax >-b) (11.7)
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As a result, the values of a are unrestricted at the points satisfying the KKT

conditions, and these are expressed in the form:

A x =b, x > 0 (11.8)

a A + 13 = c, a unrestricted, 13 a 0 (11.9)

13x =0 (11.10)

Suppose x is an optimal solution. Then, in order to satisfy the complementary

slackness condition (11.9), it must be that

(13. I N) (X*, XN) = 1 S x, + PH 'N = 0 (11.11)

where the vectors 13 and x have been expressed in blocks of components associated

to the basic and nonbasic variables (subscripts B, N respectively).

Now, s!nce xN = 0, it must be that 130 x, = 0, and (11.11) holds when 130 = 0.

Then (11.8) can be expressed:

(ca, cN) - a(B, N) - (PSI PN) = (0, 0) (11.12)

equivalent to

(cB - aB = 0) and (cN - aT - N 0) (11.13)

where N is the submatrix of A formed by the rows associated to the nonbasic variables.
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D. OPTIMALITY CONDITIONS IN NETWORKS

The theorems, properties and corollaries in this section can be found in Ahuja at al,

1993. Suppose N is a network. A set of node potentials is a mapping R: N -> X. Let

S= (x(1), it(2), ..., x(n)) be a set of node potentials. For compactness, sometimes we will

treat x€ as a vector. We define the reduced cot of an arc (ij) as

Cý = % - n() +(J) (11.14)

We use the superscript to indicate that the reduced cost is associated with the set

n. Note that when c = 0 the reduced cost vector is identical to the cost vector. (Also

for compactness, we refer to both cost sets in terms of vectors, which we will do

sometimes to simplify the notation).

Lemma: Suppose we want to solve a minimum cost flow problem using as set of costs

the reduced costs associated with a set of node potentials n. Let z(n) denote the value

of the objective func*"n value of this problem, and z(O) the objective value considering

the usual costs. The flow values are the same in both cases. Then we have

E ; E" - E x )d(Q)1.5
I,) IJ leN

or

z(%) z(O) - i d (11.16)

where d is the vector of demands and n the vector of node-potentials.

Proof. Set all node potentials to zero. Increasing the potential of node k from 0 to n(k)

modifies the reduced costs as follows:
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- all incoming arcs to node k increase reduced costs by x(k);

- all arcs leaving k decrease reduced costs by wc(k).

This causes the value of the objective function to decrease to:

z(i) -- z(O) + % (k)'xk - n(k)Ex.

- z(O) - n(k)d(k) (11.17)

Proceeding as above for all the nodes yields (11.16)

Corollary (11-1): Optimal minimum cost flow problems with arc costs c, or c'1, have the

same flow distributions.

Corollary (11-2): For any directed cycle C and for any set of node potentials it:

C C

Corollary (11-3): For any directed path P from k to I:

Sc; E , - i(k) + it()(11.19)

Let u represent the vector of arcs capacities. We define the residual network

with respect to a given flow x as follows: replace each arc (ij) in the original network by

two arcs (i,j) and (j,i):

(i) the arc (i,j) has cost c and residual capacity rxj = u - and

(ii) the arc J,i) has cost -cij and residual capacity r~i x

The residual network consists of only the arcs with a positive residual capacity.

The following theorems (Ahuja et al, 1993) state the optimality conditions in network

problems (for brevity, the proofs have not been included here).
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Theorem I1-I (Negative Cycle OptimaiWy Cndtion.): A feasible solution i is an

optimal solution of the minimum cost problem if and only if the residual network G(i)

contains no negative cost (directed) cycle.

Theorem 11-2 (Reduced Cost Optimality Conditions): A feasible solution x is an

optimal solution of the minimum cost problem if and only if some set of node potentials

Ssatisfy ci, 7 0 for every arc (ij) in the residual network G(x).

Theorem 11-3 (Complementary Slacknes Optimality Conditions): A feasible solution

x is an optimal solution of the minimum cost problem if and only if for some set of node

potentials n , the reduced costs and flow values satisfy the following for every arc (ij) in

the network:

(i) If c,, > 0, then -x-, = 0 (11.20)

(ii) If 0 < < u, then c,1m = 0 (11.21)

(iii) If cQm = 0, then R, = U1, (11.22)

The above sections provide a method for checking for optimality of solutions in

optimization problems, and its specialization to network flows. This will be useful when

revising particular techniques in the chapters to follow.
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III. THE TRANSPORTATION PROBLEM IN THE CONTEXT OF MINIMUM COST
PROBLEMS

A. INTRODUCTION

The transportation problem was first introduced by Hitchcock in 1941, and since then

a wide variety of seemingly different problems have been shown to be equivalent to the

transportation problem. Historically, the transportation model has served as "laboratory

animal" in the development of optimization technology (Dantzig, 1963). No matter how

large the problem at hand, it possesses a simple, exploitable structure.

The basic structure is the following: a company owns m warehouses (origins, or

supply nodes), in each of which there is a given amount of a certain commodity in stock.

Also, there are n retailers (destinations or demand nodes), each with a given demand

for this commodity. The unit transportation cost from each warehouse to every retailer is

known data. The objective is to ship units from supply nodes to demand nodes, such

that:

(i) the total shipping cost is minimized;

(ii) the demands of retailers are satisfied;

(iii) no more units leave a warehouse than there are in stock;

If the total supply equals the total demand we have a balanced transportation

problem. Actually, we can assume that all transportation problems can be formulated as

balanced, adding dummy supply (demand) nodes to provide (absorb) the needed (extra)

supply (demand).
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When the number of supply nodes Is small compared with the number of demand

nodes we have a long transportation problem.

When there are limits imposed on the capacity of the supply from the different

origins to the different destinations we have a capacitad transportation problem. This

is a more interesting problem, for practical purposes. In this work we will focus on the

simplest of the models, defined above, with many more demand nodes than supply nodes

(long version).

The formulation of a transportation problem involving 'm' origins and 'n' destinations

is:

m n

rain E r, cis ll~a
I-1 j-1

n

s.L E x, s,, i=1,2,...,m (111.1b)
J-1

m
•'x, dI, jwl,2,...,n (1.c

where

cij is the cost per unit for shipping from i to j;

xij is the number of units shipped from i to j;

s1  is the available supply at node i;

di is the demand required by node j.

18



The above model has m n decision variables x,. The set of constraints defined

in (ll.lb.-c) is written ,L x - b in compact form, and is composed of m + n

constraints.

The matrix A has one row for each node, and one column for each arc (ij) joining

supply-demand nodes. Furthermore, each column contains two non-zero coefficients, and

they are precisely +1 and -1 (there is another version, called "Generalized

Transportation Problemn, which allows for coefficients other than zero and one in the

demand constraints). The rank of A is m+n-1. The matrix A is totally unimodular, i.e.

the determinant of every square submatrix formed from it has value -1, 0, or 1. This fact

allows for integer optimal solutions when both supplies and demands are integer values

(Bazaraa et al..., 1990)

B. TRANSPORTATION TABLEAU

A convenient form of representing the transportation model is by means of a tableau

where the rows 1, 2, ... , m represent origins, and the columns 1, 2, ..., n represent

destinations. Each cell (ij) contains the flow variable x, and/or the cost c, (Figure 1).

This representation is commonly used for describing particular strategies of solution to the

transportation problem. This will be seen particularly in Chapter V. Here it is presented

for compactness.

C. GRAPH AND NETWORK REPRESENTATION

The underlying structure in a transportation problem is that of a directed network.

More specifically, it is a complete bipartite graph, i.e. the set of nodes is partitioned into

two subsets: origins and destinations; every origin is connected to every destination (and
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Figure 1.. Thmuportaion Tabi..

vice-versa); finally, all the arcs defining the problem go from a supply node to a demand

node. In graph terminology, every origin is adjacent to all destinations and no destination

is adjacent to any origin. (Note that a pair of supply-demand nodes not adjacent to each

other are joined by an arc highly penalized in cost). The schematic representation is in

Figure 2.

In order to complete the network representation of the graph we need to add an

additional node. The resulting network has 'm+n+1' nodes. This translates into the linear

programming model as a new artificial variable. We do not need to put costs in the

originated arcs, since the artificial variable value must be zero in any feasible solution

(Bazaraa, 1990). The additional node plays the role of a root node.
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m origins n destinations

FigA. 2-. B4itite Graph associated with a Transportation Problem.

A basis is now represented by a rooted spanning tree (i.e. a spanning tree plus an

extra arc, root arc, corresponding to the artificial variable). Figure 3 represents the

associated network with the transportation problem, and a basic feasible solution.

Since every destination must have its demand satisfied, the solutions to a

transportation problem have at least one positive flow arriving to each demand node. This

is of special interest in long transportation models. In those models, at optimality the total

number of positive flows is at most m+n-1. If so, then we have that at most (m+n-1) -

n = m - 1 demand nodes will be supplied by two or more supply nodes while the

remaining at least n - m + 1 demand nodes will be supplied by only one supply node.
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Figure 3.. Transportation ProblekL Network Representation and Basic
Feasible Solution.

D. DUAL PROBLEM

It is interesting to formulate the dual of the transportation problem. Recall that in

dual problems (Bazaraa et al, 1990), there is a dual variable corresponding to each

constraint. In the present case, we establish two groups of dual variables: those

associated with constraints (ll.lb) are designated u,, and those associated with

constraints (111.1c) are designated v, . The dual problem is stated
m n

max • E dv (l1l.2a)
i-1 -

s.L U, + v| + C" W C, (lll.2b)

U1 , v, unrestricted (111.2c)

22



The slack variables c*J are introduced in (lll.2b) to obtain equality.

The primal-dual relationship can be explained as follows: suppose that a firm Alpha

has to transport goods as defined by the primal problem. The firm is planning to hire a

smaller firm, Beta, to do the job instead. The hiring conditions must be such that the costs

claimed by Beta to Alpha can never be bigger than those defined by the primal setting

(otherwise, Alpha would be willing to do the job). So Alpha puts up the following proposal:

Beta will receive u, dollars for each unit shipped out of the i-th origin. Beta also will

receive v, dollars for each unit delivered to the j-th destination (lll.2a). Constraints (lll.2b)

state that the shipment of a unit from i to j cannot be greater than the shipment cost of a

unit in the primal problem (Weak Duality Property). Within this setting, Alpha sets Beta

free to arrange the transportation policy, And Beta will try to maximize profits. In doing so,

the best profit (optimal objective function value) that Beta can produce is exactly the least

expensive (optimal) solution that Alpha could come to by itself (Strong Duality Property).

Suppose that we have a feasible solution x. Since (any) one of the primal

constraints is redundant, (any) one of the dual variables can assume an arbitrary value.

One way to check for optimality of x is by checking whether the primal feasibility and

dual feasibility are accomplished. This is known as the supervisor's principle. That is,

if u, v are the dual vectors (variables) associated with x, the fact that u, v are feasible

for the dual problem, automatically implies that x is an optimal solution for the primal

problem.

E. OPTIMALITY

In the transportation problem the rank of the matrix A is m+n-1. To apply the simplex

method we need full rank. We solve that with an artificial variable (Bazaraa, 1990). Then,
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any basis will consist of m+n-1 variables, plus an artificial variable. In feasible solutions

the value of this artificial variable is zero.

Recall the primal (111.1a-d) and the dual (lII-2a-c) of the transportation problem.

Recall also that the Complementary Slackness Theorem states that at optimality, if a

variable is positive, then the corresponding constraint in the other problem must be tight.

And if a constraint in one problem is not tight, then the corresponding variable in the other

problem must be zero.

The process of finding an optimal solution should follow the next general steps:

(i) Start with a feasible solution x;

(ii) Find the duals (w, v) associated with x;

(iii) Check if the dual variables are a feasible solution to the dual problem, or price

out the nonbasic variables and determine if they price out unfavourably (i.e.

they are not eligible to enter the basis).

In the described process, the duals can be computed as solution to the system:

[w vi B -- c4  (111.3)

and the pricing operation of the nonbasic variable 'k' is performed by computing:

ck - [w v]Nk (111.4)

the special structure of the problem makes (111.4) easy to compute, since

ci - 1w v Nk = CO - (wN-v) (lit,5)

The previous facts are easily followed using the network structure of the problem.

Algorithms like the simplex network and GNET use them very efficiently. The simplex

method maintains a basic feasible solution at every step. Given a basic feasible solution,

the method first applies the optimality criteria to test the optimality of the current solution.
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If the current solution does not fulfill this condition, the algorithm performs an operation,

known as pivoting, to obtain another basis structure with a lower(minimization) or identical

cost. The simplex method repeats this process until the current basic feasible solution

satisfies the optimality criteria. GNET (Bradley et al, 1977) is a network simplex algorithm

that uses the idea of basic trees described previously in this chapter, together with

extremely efficient data structures to represent the necessary information about the

problem. For a description of network simplex algorithms, see Ahuja, et al, 1993.

In the next three chapters, we consider some of the multilevel methods existing in

the optimization literature.
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IV. THE DECOMPOSITION METHOD

A. INTRODUCTION

"Decomposition" is a term that embraces three equivalent procedures for dealing

with large linear programming problems. The procedures are the Dantzig-Wolfe

Decomposition, Benders' Decomposition and the Lagrangian Relaxation. The usual

environment is that of a problem having a special set of constraints (hopefully very easy

to handle), together with another set of bundle constraints that make the problem harder.

The three methods involve systematic computation at two levels. One level is called

The Master Problem. The other is called The Subproblem. The subproblem works on

the easy set of constraints. Normally, the subproblem is solved quickly. But its solution

does not necesaely satisfy the bundle (harder) constraints. The solution of the subproblem

provides information via feedback to the master problem, specifically in the problem

parameters. The modified master problem originates a new subproblem. The control is

passed again to the subproblem level, where a new solution is produced. The process

continues until it converges and an optimal solution is found satisfying the bundle

constraints. The following sections will cover an overall description of the various

techniques. The goal is to broaden the spectrum of multilevel techniques that could be

used to produce multigrid approaches to optimization problems.

In Appendix A, a numerical example is provided showing a practical application of

the Dantzig-Wolfe decomposition scheme.
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B. DANTZIG-WOLFE DECOMPOSITION

Consider the following linear program:

min cx (IV.la)

s81 Ax -, b (IV.lb)

X e X (IV.1c)

Here, (IV.lc) is the set defined by special constraints; (IV.lb) represents the bundle

constraints. If X is bounded and polyhedral, then any point in X can be expressed as

t

x E -- x(1)
J-1

t

with E =1
i-1

and 11 0 0; j = 1,2,...,t

where x(j) are the t extreme (corner) points of the set X.

Substituting in (IV.A), the original problem is now expressed in terms of the new

variables k. as follows:
t

min (cxl) 11 (IV.2a)
i-I

t
s.t. E (Ax(,)) 1., - b (W) (IV.2b)

i-1

t

. -1 1) (IV.2c)
i-1
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This is called the Master Problem, in the usual terminology. The variables w and

a in parentheses are the dual variables associated with each respective set of constraints

of the master problem. So w actually is a vector of length equal to the number of rows in

A, whereas a is a single variable, since (IV.2c) defines only one constraint.

At this point, it is useful to write the dual problem associated with the master

problem:

max w b + vd (IV.3a)

s.t. w (A xj)) + a _< (c x,)) (IV.3b)

w, a unreiricted (IV.3c)

Referring back to the Master Problem, trying to solve (IV.2) is a hard task, since the

number of variables is normally very large. They correspond to the different comer points

of X, and finding them is computationally expensive, perhaps prohibitively so.

Now consider the following problem:

max (w A - c) x (IV.4a)

s.t. x e X (IV.4b)

Note that this problem is bounded and not empty, so it attains an optimal solution

at one corner point of X. Note also that the solution solves precisely the pricing operation

that takes place when applying the Simplex method to (IV.2):

max izi - c} , max [w, a] (Al)- cx

(IV.5)
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where the index runs over 1,2,... ,t, the comer points of X. The set (IV.4) defines the

Subproblem, and is easily solved because of the special structure of Its constraints.

Actually, the Subproblem task in the whole context is to take advantage of the special

structure of the constraints defining the set X in order to solve the pricing operation of the

Master Problem as a fast linear program.

In summary, the Dantzig-Wolfe method proceeds in the following way:

(i) Start with a feasible solution for the master problem (IV.1);

(ii) Solve the associated subproblem;

(iii) The solution to the subproblem provides the coordinates of a new comer point

that comes into play;

(iv) The subproblem also provides an entering variable in the basis of the Simplex

Tableau. After pivoting, the basis inverse, dual variables, and RHS are

updated;

(v) Now we have an improving basic feasible solution of the master problem. The

set of X.'s provide a new convex linear combination which is a feasible solution

(the best so far) to the original problem (IV.1);

(vi) Iterate the process to convergence of the solution.

Finally, it can be shown (Bazaraa et al, 1990) that, at each iteration, we obtain an

upper and lower bound to the optimal objective function of (iVA). So the computations can

be stopped at a determined level of accuracy of the current solution.

A numerical example of the practical use of this method is given in Appendix B.
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C. BENDERS' DECOMPOSITION

Benders' decomposition scheme performs a complementary procedure to that in

Dantzig's method. Here, the dual is really the problem to solve. But let us start with the

primal. Consider the following problem:

min c x (IV.6a)

s.t. Ax = b (w) (IV.6b)

D x > d (v) (IV.6c)

The dual to this problem is

max wb + vd (IV.7a)

s.t. wA + vD < c (IV.7b)

w unrestricted, v 2 0 (IV.7c)

This is the problem to be solved using Benders' method. It is interesting to keep

considering it as dual, in order to view it in terms of a decomposition scheme.

Consider w as a parameter. Then restate (IV.7) as:

max I wb +max (vd) (V8ma { s.t. vD v• c -wA (iV.8)
(w usc f

Note that the dual of the inner maximization problem in (IV.8) is:

{min (c -wA) x}(V9s.t. Dxa (IV.9)

Therefore, at optimality, the objective function of (IV.9) is equivalent to that of the

mentioned inner problem. This fact allows us to express (IV.8) as:
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max {wb - min (c- wA)xt (IV.IO)
(w unrestrlcts4 91t x 6 X

Since the current inner minimization problem is bounded and nonempty, it attains

an optimal solution at one of the extreme points of X. Suppose that X has t of these

extreme points, and name them in similar fashion as we did in section A. Then we can

formulate the following statement, equivalent to (IV.10):

max )wb min (c - W)xe 1 (IV.11)
(w unrestricted) j = 1,2,...,t =

The last problem can be restated in the following terms:

max z (IV. 1 2a)

s.t. z :ý wb + (c - wA) x, j = 1,2,...,t (IV.12b)

z, w unrestricted (IV.1 2c)

The above problem (IV.12) represents the Master Problem in this procedure. This

setting (IV.12) expresses the previous problem (IV. 11) without the two "levels'. On the

other hand (and this complicates things) the problem defined in (IV. 12) has t constraints,

one per corner point. Those are, in practice, too many constraints.

Let us underline the parallelism between this situation and the situation at stage

(IV.3) in the Dantzig-Wolfe procedure. In the earlier case, the situation was handled by a

column-generating procedure. Here we will proceed on a row-generating fashion. We

will come back to this point.

It is useful to form the dual of (IV.12). To facilitate things, express (IV.12) as follows:

31



max z (IV.13a)

t.1 w(Ax - b) - z s x 00 (IV.13b)

w, z unrestricted (IV.13c)

Again, we have written the next dual variables associated with the constraints in the

problem. Next we can formulate the dual of (IV.13) to obtain:

min (cx)Xj (IV.14a)
i-I

S.t. (Ax, - b) X1 0 (IV.14b)
i-i

t

.= 1 (IV.14c)

Note that the last problem is precisely the Dantzig-Wolfe approach to (IV.6), where

the comer points correspond to the set X defined by the constraints (IV.6c).

A way of alleviating the difficulty of dealing with a large number of constraints, that

arose at (IV.12) is by a relaxation technique. It is based on the following fact: if we solve

(IV.13) to optimality, but using only a subset of the constraint '.13b), then the optimal

solution, i.e. (6, i), attains a value of the objective function that is an upper bound

for the original problem (IV.2). (It is easy to see that it is so, because the set of values of

x defined by the subset of constraints contains the feasible region defined by (IV.12b),

and both objective functions are the same). So if the pair (i, i) found is such that
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it is feasible for the constraints (IV. 1 3b) then the solution is optimal to the original problem.

Again, this is a hard task, due to the large number of constraints.

The above check is equivalent to checking that

z i wb + mln{(cx ýA)x} (IV.15)

Problem (IV.15) is called The Subproblem in this decomposition.

Summarizing Benders' procedure:

(i) Solve the LP subproblem (IV.15).

(ii) If the solution satisfies (IV.15) then we are done.

(iii) Otherwise, let xk be the optimal solution to (i). Add the constraint

z s wb + (c - wA) x(k) to the relaxed problem (i).

(iv) Reoptimize until some relaxed problem gives an objective value - equal to the

optimal value in (IV.15)

D. LAGRANGIAN RELAXATION

Lagrangian relaxation uses the idea of relaxing the explicit (bundle) constraints by

bringing them into the objective function with associated Lagrange multipliers w.

So if our original problem is of the form (IV.1), then this technique relaxes the

problem, restating it as follows:

min cx + w(Ax - b) (IV.16)

s.t. x E X (IV.17)
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The resultng problem is called the Lagranglan Relaxaon, or Laganglen

Subrob/em of the original problem.

If we define

L(w) = Min I cx - w(Ax - b)} (IV.18)

as the Lagrangian Function, then the following holds:

Lemma: For any vector w of the Lagrangian multipliers, the value L(w) is a lower bound

on the optimal objective function of the original optimization problem.

The proof can be written in abreviated fashion as:

min (cx : Ax=b, xe X)

= min (cx + w(Ax-b) • Ax=b, xe X)

Smin (cx + w(Ax-b) • xc X)

The above inequality is produced when the elimination of the constraints Ax = b

from the right hand side above cannot cause an increase in the value of the objective

function (most likely the value will decrease).

Now, if we want the sharpest lower bound on the optimal objective value, we would

need to solve the following optimization problem:

L = max L(w) (IV.19)
w

which is called Lagranglan Multiplier Problem (or Lagranglan Dual) associated with

the original optimization problem.
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Theorem: The optimal objective function value L of the Lagranglan multiplier problem

is always a lower bound on the optimal objective function value of the original problem.

Proof. Let LS be the set of all the optimal objective values L(w). The maximum is a

member of the set. Therefore it is also a lower bound for the optimal objective of the

original problem.

So we have the following relationship:

I.(w ) < L " * - z " * -- cx (IV.20)

The above leads to the following two properties:

Property (a) (Optimailty test): Suppose that w is a vector of Lagrangian multipliers and

x is a feasible solution to the optimization problem (IV.A) satisfying the condition

L (w) = cx . Then L(w) is an optimal solution of the Lagrangian Multiplier Problem and

x is an optimal solution of the optimization problem (IV.A).

Property (b): If for some choice of the Lagrangian multiplier vector w the solution x of

the Lagrangian Relaxation is feasible in the optimization problem (IV.A), then x is an

optimal solution to (IV.1) and w is an optimal solution to the Lagrangian Multiplier

Problem.

Hence the Lagrangian relaxation gives a lower bound to the optimal value for the

objective function of optimization problems. This is precisely its primary use.
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Thoomwi Suppose that we apply toe Lagranglan Relaxaton techiqu to a linear

program (LP) defined as follows:

min cx

s.t. Ax b (w)

Dx= q (v)

x 2 0 (p)

by relaxing the constraints Ax = b. Then the optimal value L of the Lagrangian

multiplier problem Is eal to the optimal objective function value of (LP).

Note the associated dual variables w, v. Suppose (w ", v -, p -) are optimal

solution for the dual problem. Let also x" be the corresponding primal solution. By linear

programming theory x', w', v*, " satisfy the dual feasibility and complementary slackness

conditions:

w*A v*D + = (IV.21a)

P'x 0 (IV.21 b)

P > 0 (IV.21 c)

Now, let us write the Lagrangian relaxation applied to (LP) for L(g) = L(w*):

min cx - w'(Ax-b) it (c-w'A)x + wb (IV.22a)

s.t. Dx = q (v) (IV.22b)

V 2! 0 ()3V.22c)
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The dual feasibility and complementary slackness conditions for this problem am:

- - c - wOA (IV.23a)

o" = 0 (IV.23b)

W k 0 (IV.23c)

The solution x" is feasible for the Lagrangian L(Q) when pI is substituted by w'.

This is because x" is feasible for (LP). Furthermore, it satisfies (IV.23). Therefore x' is

an optimal solution for L(w'). The Lagrangian Optimality Property implies that L(w) is the

optimal objective function of (LP).

Lagrangian relaxation is a general solution strategy for solving mathematical

programs that permits us to decompose problems to exploit their special structure. As

such, this solution approach is perfectly tailored for solving many models with embedded

network structure.

The reviewed Dantzig-Wolfe decomposition, Bender's decomposition and Lagrangian

relaxation are methods that can be considered to work in two (or more) levels. The

importance of this will be seen when the economic interpretation of one of them (Dantzig-

Wolfe) is presented later in Chapter IX.
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V. AGGREGATION METHOD

A. INTRODUCTION

The idea underlying this approach is that of consolidating 'neighboring' origins

(destinations). Balas (1965) uses aggregation to produce an algorithm of specific

application to the solution of the transportation problem. In his approach, the solution to

the aggregated problem is used as a means for obtaining some Information that allows

for a simplified version of the original problem. Progress can be made by considering at

each step only a certain part of the problem's data. We will present this method, due to

Balas, posed on a transportation problem.

The scheme consists of the following general pattem:

(i) Simplify (aggregate) the problem, reducing its size (this could be considered

an auxiliary step for (ii)) ;

(ii) With the information obtained from (i), construct a derived problem, which is

smaller than the original problem, although of the same order of magnitude,

and solve it;

(iii) Hopefully, (ii) will solve the original problem. If not, some iterative process is

applied that gradually increases the size of (ii). (An unfortunate sequence of

iterations could end up reproducing the original problem, but it is not likely).

Figure 4 is a representation of the problem to be solved. In the figure, (a) is the

original problem. The aggregation process groups 'contiguous' nodes to form a single

aggregated node. This gives the schematic representation (b). (A numerical example is

offered in Appendix B).
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B. NOTATION AND DEFINITION

For notation purposes, consider the original set of supply nodes to be arranged in

m groups. Groups are denoted as:

Group M,: 1, 2, ... m,;

Group M2: m1+1, m 1+2, .... M2;

Group M3; m2+1, m2+2, .... M3;

• .... .. ,........ ........ ....... ,.... ....

Group Mm.,; mm.,+l, Mam.+ 2 , ..., mm (V.1)

Similarly, destination nodes are arranged in 'n' groups as:

Group N,: 1, 2, .... n,;

Group N2: n1+l, n,+2, ... n2;

Group N3; n2+1, n2+2, .... n3;

. ,. ° o...,.. . . . ........ ....... .... ....

Group No..; nn.1+1, nn.1+2, ... nn (V.2)

Let H be the set of all indices 'h' from (V.1), and K the set of all indices 'k' from

(V.2). Then the original problem will be called hereafter Problem (I), and is stated in the

following terms:

Problem (I)

min EE ChkX6h (V.3a)
heH keK

s.t. E Xh = - h (V.3b)
keK

E xhk = b= (V.3c)
heH

Xhk 1 0 (V.3d)
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Next we define the aggregated problem as PMbilm (N) as follows:

(i) Origin nodes belonging to group R will form the aggregated node i, with I

being the set of all i;

(ii) Destination nodes belonging to group NP will be aggregated as node j, with J

being the set of all j.

The costs, supplies and demands for the aggregated problem (11) are defined as

follows:

(iii) C1=min(clhe H,ke K) (V.4a)

Al = , ah with h e Mi (V.4b)

BI = Ek ak with k E Nj (V.4c)

ICO - chkl < a, for all h e MI, k e NI, i e 1, j e J, and some a (V.4d)

Then, the aggregated problem (11) is stated as

Problem (11)

mrin EECX (V.5a)
lei jej

s.t. E i (V.5b)
leJ

EX - B (V.5c)
ltl

Xv > 0 (V.5d)

Figure 4 is a representation of both problems.

Let i be a nondegenerate feasible solution of (II). Associated with Problem (II)

consider a new problem, called the partial problem related to I. For simplicity, hereafter
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we will refer to this problem as Problem (111), implicitly assuming it is related to a flow

coming from (11). The problem is formed according to the following

RULE: Consider only those flows in the original Problem (I) going from

groups M, to groups N, such that Rij > 0

Better than stating Problem (111), the reader is encouraged simply to follow the

example in Appendix B.

Given the arrangement of Problem (I) it is easy to see that every component X, of

the flow X has an associated block of flows in Problem (I). Those are the flows going from

M, to NV. So, a total of mxn blocks of flow form the whole Problem (11). The above rule

reduces the size of the problem to be solved, by excluding all those blocks of flows

associated with zero flow in the solution's components to the Problem (11). This is

particularly interesting in long transportation problems, where a lot of flows are at level

zero in the optimal solution.

Clearly, we can establish a 1-1 mapping between feasible and nondegenerate

solution to (11) and problems (111). (This is because a solution of such class for (11) is

defined by the flow values corresponding to 'm + n - 1' nonzero variables).

Furthermore, for every feasible solution to problem (11) there exists a feasible

solution to problem (111). It suffices to consider the flow

Xhk Aihbk) xij

Also any feasible solution to a Problem (111) is a feasible solution to the

corresponding Problem (I). (Problem (111) is more restricted than (I)).
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(a) Original Problem (b) Agge pte Problem

2 2 ÷

"M n

M n +

mI+ 2n2 2 2

3 n3

rn-In-

m ~nf

Figure 4.. Balas' Node Aggregation.
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C. OPTIMALITY: RELATIONSHIP BETWEEN PARTIAL AND ORIGINAL

PROBLEMS.

Here we use the complementary slackness, expressed in terms of the slack

variables (Chapter II). The resulting condition is:

Dhk = chk - Uh - Vk > 0, for valid values of h,k (V.6)

where Dhk represents a slack variable, and uh , vk are duals. The expression (V.6)

will be zero for positive flows, and greater than zero for flows equal to zero.

Let D'hk be the values of the slack variables in those blocks not in the optimal

solution to (II). Then

Theorem (I): An optimal solution to problem (Ill) is also optimal for problem (I) if and only

if D'hk > 0.

Proof: Let x' be an optimal solution to (Ill). Then it is feasible solution for (I). And since it

satisfies the complementary slackness conditions it is also an optimal solution for (I).

Now suppose x is an optimal solution for problem (I) and not for problem (Ill). Then

there will be some positive flow i, not in the optimal solution for (Ill). The corresponding

slack variable D'hk will be less than zero, which contradicts the assumption in the theorem.

Next is an algorithm suggested by Balas (1965).

Algorithm:

(1) From Problem (I) formulate Problem (II);

(2) Solve Problem (II);

(3) From the optimal solution to (II) formulate Problem (Ill);

43



(4) Solve Problem (111);

(5) Check if, at this point, the solution satisfies Theorem (I).

(i) if solution to (111) is optimal for (1) stop;

(ii) if not, form a new Problem (111) adding those blocks in (111) violating

Theorem (I).

(6) Improve the solution obtained in (4) so as to make it optimal for this new

partial problem; Go to (5).

In Appendix B a numerical example develops in practical terms the preceding

algorithm.

Balas' aggregation is a two-level method to be applied only to the solution of

transportation problems. In the next chapter, more general multilevel methods are

presented to solve more general network flow problems.
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VI SCAUNG

A. INTRODUCTION

Scaling techniques give the best worst-case running time for many of the network

optimization problems. They are computationally effective in cases where reoptimization

from a good starting solution is more efficient than solving the problem from scratch.

Gabow (1984) demonstrates that under a "similarity assumptions (that the logarithm of the

largest magnitude in the data is of the order of the number of nodes) scaling could be

used to advantage in designing theoretically efficient algorithms for a broad variety of

network optimization problems.

Scaling was introduced by Edmonds and Karp (1972). Using scaling, the first

polynomial time algorithm for the minimum cost problem was produced. The algorithm of

Edmonds and Karp uses scaling on the right hand side repeatedly to employ the out-of-

kilter method iteratively. Between 1972 and 1984, there was little interest in employing the

scaling approach of Edmonds and Karp in actual network flow computation. In spite of

favorable asymptotic worst-case performance it was widely presumed that algorithms

employing data scaling would not be nearly as fast in practice as the network simplex

method. Since 1985, research has been extensive. Researchers now recognize that

scaling techniques have great theoretical value as well as potential practical significance

(see, for example, Ahuja, et al, 1993).
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B. NOTATION AND DEFINITHON

Let G = (N, A) be a (directed) network defined by a set N of 'n' nodes and a set A

of 'W' directed arcs. The following notation holds:

d(i): the demand of node i;

C4, the cost associated with the arc (ij);

C : the largest cost;

u4 the capacity of the arc (ij);

U the largest capacity;

r, the residual capacity of the arc (ij).

A pseudoflow x is a function x: A -> R satisfying only the capacity and

nonnegativity constraints (it need not satisfy the mass balance constraints).

The Imbalance of node i is given by

e(l) d(i) + E x - E x,
U: O,I)EAI : (iJ)eAj

all I l A (Vl.1)

e(i) is called excess (defici) if it is greater (lesser) than 0.

The set of nodes with excess (deficit) is denoted E (or D).

Next we define the c-optimality of a pseudoflow i This concept is, independently,

due to Bertsekas (1979) and Tardos (1985). Figure 5 is a kilter diagram that graphically

compares E-optimality and the usual optimality.

46



cl ~

0 __ _ _ _ _ _0

(a) (b)

Figure 5.- Kilter Diagrams showing: (a) Optimality; (b) e-Optimality.

A pseudoflow i is said to be E-optlmal (for some E > 0) if for soct.e set of node

potentials x the pair (x, X) satisfies:

c> > =0 (VI.2a)

-. 5 c W :5 -- 0 :g U, (VI.2b)

C; < - - u, (VI.2c)

In terms of the residual network, the pseudoflow x is said to be E-optimal (for some

> > 0) if for every arc (ij) in the residual network G(x):

c" a -(VI.3)
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C. COST SCALING

As its name suggests, cost scaling is an algorithm approach that applies scaling to

the costs. Assume, without great loss of generality, that the costs are integer. Then:

Theorwn VI1 (Beiteesks, 196): For a minimum cost flow problem with integer costs,

any feasible flow is e-optimal whenever r z C (largest cost). Moreover, if e < 1/n then

any e-optimal feasible flow is an optimal flow.

Proof: Let be any feasible flow and let x = 0. Consider the residual network G(x). Then

for every arc (ij) in G(x() cij = -cj a -C , therefore x is E-optifmal for E = C.

Now consider an e-optimal flow x" with E < 1/n. Let x be the node potentials

associated to that E-optimal flow. Let W be any directed cycle in the residual network

G(x'). Then, by (VI.3)

E C; > -k n > -1

But the costs are integers, and this implies that the above sum is nonnegative.

Now, by Corollary 11-2,

E c•j a 0

1 (1, j) EW)

Therefore W is not a negative cost cycle. Hence, by Theorem I1-1 x" must be

optimal.

A node i is said to be an active node when its imbalance is positive. An arc (i,j)

adjacent from an active node, and belonging to the residual network, is said to be an

admissible arc if -1E < c2 < 0 . In Figure 6 for an arbitrary arc (i,j), (a)
2

represents a situation of optimality, while (b) illustrates admissibility.
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0 0 a

(a) (b)

Figure .- Kilter Diagrams showing: (a) Optimality; (b) Admissibility.

Next we describe a generic-cost algorithm for minimum cost flows problems which

works in two stages: first, it converts an z-optimal flow into a (1/2 £)-optimal pseudoflow;

then gradually converts this pseudoflow into a flow, maintaining the (1/2 E)-optimality.

Figure 7 shows the algorithm, while Figures 8 and 9 are graphic representation of the

successive steps on an example. Figure 8 starts with a situation determined by the first

residual network, and e = 8. The order of the operations performed has been determined

to satisfy the example's purpose. Note that the values of the node potentials remain

constant until Figure 9(d), when a situation occurs in which the active node has no

associated admissible arc.

In the example, the demands of the nodes can be computed using formula (VI.1)

as follows:
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Algorithm COST SCALING

BEGIN

7[:= O; E:= C;

x is any feasible flow

WHILE e > 1/N DO BEGIN

FOR every arc (i~j) in the network DO BEGIN
IF positive reduced cost then x,, 0,
ELSE IF negative reduced cost then x,, u =

ELSE leave the flow on that arc unchanged;
end; (for every....]

FOR all nodes in the network compute node imbalances e(i);

WHILE the network contains an active node DO BEGIN
Select an active node 'T;
IF there is any admissible arc (ij) in the Residual Network then begin

push 8 = min (e(i), r,, I units of flow from 'i' to 'J';
update imbalances;

end;
ELSE 7c(i) 0= )(i + Vi2

end; (while the network ...1

C = 2

end; (while ...I

END;

Figure 7.. Algorithm Cost Scaling.
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d(1) = e(1) - 10 + 0= -10;

d(2) = e(2) - 35 + 10i= 5;

d(3) = e(3) - 0 + 30 = 20;

d(4)=e(4)- 0+ 5=-15;

The imbalances for step (f) are calculated in the same fashion:

e(1) =d(1) + 0 - 0 =-10;

e(2)=d(2)+ 0-0 = 5;

e(3)=d(3)+ 0-20= 0;

e(4) =d(4) + 20-0 = 5.

D. CAPACITY SCAUNG

Capacity scaling produced the first polynomial-time algorithm for the minimum cost

problem (Edmonds and Karp, 1972). We present an algorithm that scales capacities due

to Orlin (1988). It uses the concept of the A-Residual netwosr G(x,A), defined to be the

subgraph of the residual network G(x), induced by the arcs (forward or reverse) having

a residual capacity of at least A units. For sake of clarity let us define also:

A-Excess Node. A node having an excess of at least A units;

A-Deficit Node:. A node having a deficit of at least A units;

S(A) Set of A-Excess Nodes;

T(A. Set of A-Deficit Nodes.
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The technique used is to send flow from a node of S(A) to a node of T(A). The flow

is sent along a direct path defined in the A-residual network. Such a technique guarantees

that every time a flow is sent, it will be sent in "packages" of A units.

The algorithm maintains nonnegative reduced costs in the A-residual network

(reduced cost optimaalhif. A pseudocode is showed in Figure 10.

In case that more than one path is available, we choose the most favorable (that

with a minimum reduced cost).

Each scaling phase of the algorithm is identified by the value of the scale parameter

A. The scale parameter is halved when each phase is finished. Within O(log U) scaling

phases, A = 1, and by the requirement that the data be integer, every node imbalance will

be zero at the end of this phase. At this point G(x, A) is identical to G(x). Since every arc

in G(x, A) satisfies the reduced cost optimality conditions, the flow obtained is optimal.

Figure 10 shows pseudocode for the algorithm.

Figures 11 through 14 describe the capacity scaling algorithm on a simple network

representing a transportation problem with two supply nodes and two demand nodes. Two

additional nodes (super-source, s, and super-sink, t) are included. The algorithm is

represented step-by-step. Figure 11 is a description of the simplified data to appear on

Figures 12 through 14. So, at every step three different pictures summarize the network

status. On the left hand side the real network is shown, with data of flows, capacities and

costs of each arc. Next to each node a number appears when there is an excess or deficit

associated. The following describes the main features used in the graphics:

In the real network (left hand side) thick lines represent positive flow, while dotted

lines mean zero flow. Next to the graph the current status of the sets S(A) and T(A) is also

shown.
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The two small networks represented on the right hand side are the residual (upper)

and A-residual (lower), respectively. In those, continuous lines represent direct arcs, and

dotted curved lines represent reverse arcs.

Thick lines in the A-residual network correspond to the next flow movement from a

node another node. Two different circumstances motivate flow interchange:

(i) Existence of a path in the A-residual network connecting a node in S(A) with

a node in T(A), as in Figures 12(a), 13(d-e) or 14(e);

(ii) Existence of an arc with negative reduced cost in the residual network, as in

Figures 12(c) or 14(d). In such cases, the value of the reduced cost is shown

in the center of the arc. Recall that those arcs will drive flow to saturation, so

that only arcs with nonnegative reduced costs remain in the (residual)

network.

Nodes with excess or deficit are filled in white, while all others are filled in black.

The following are the noteworthy situations in the execution of the example:

- Figure 12(b): no direct path is available connecting S(A) and T(A). Therefore

the parameter scale must be halved.

- Figures 12(c) and 14(d): after halving the parameter scale, arcs with negative

reduced costs presumably occur in the residual network. This forces flow to

be sent along these arcs to bring them to saturation.

- Figure 14(e): the node 's' has been isolated in the residual network, with no

imbalance. Thereafter, this node cannot be accessed in any A-residual

network. The distance labels to this node will be infinite. This situation is

consistent with the requirement of saturating all the arcs going to the super-

sink.
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Algorithm Capacity Scaling

begin

n: 0;
A 2ItI u;

WHILE A > 1 DO BEGIN

FOR every arc (ij) in G(x) DO BEGIN
IF r, > A AND e,. ( 0 then begin

send r,, units of flow along arc (i, j); [saturate arc (i,j))
update x and the imbalances e

end;

S(A) = 1i e G(x, A), such that e(i) > A I
T(A) = [i E G(x, A), such that e(i) < - A)

WHILE (S(A) * a AND T(A) * a)
AND (there exists a path from S(A) to T(A)) DO BEGIN

select a node k E S(A) and a node I c T(A)
determine shortest path distances dfrom node k to all other nodes

in G(x, A) with respect to the reduced costs c,,.
Select a node q E T(A); Let P(k, q) be the shortest path from k to q
Augment A units of flow along the path P(k, q)
update 7t = 7t - d
update x, S(A), T(A), and G(x, A);

end; (while}

A=A/2

end (while)

end

Figure 10.- Algorithm Capacity Scaling
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Figure 11- Key for Flows in Figures 12, 13 and 14

Scaling techniques maintain certain parallelism with multigrid, that will be proposed

in the *Conclusions" section in Chapter IX. Also, it is remarkable that scaling suggests

a more abstract concept of a grid, represented in the scaling parameter. But this concept

requires a previous exposure to the concept of grids, which is deferred to Chapter VIII.

In the next chapter, we present a methodology that has been used in dynamic

systems control problems. It is known as the Perturbation Method, and, although

somewhat apart from the general path of this research, the fact that aggregation is a basic

mechanism in the development of the perturbation method, together with the special

treatment it gives to some linear programs is of special interest since it presents more

insights into the process of building up a multigrid approach to optimization problems.
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VII PERTURBATION METHOD

A. PERTURBATION

The main idea of the perturbation method is to transform an original problem into

a simpler one - called the "reduced problem" - . The original problem will then be

considered a "perturbationm of the reduced problem. The perturbations are supposed to

be small, and their magnitude is characterized by a parameter e. We will consider only the

case of linear programs.

Consider a mathematical program F(O):

rain qoj x
(Vii.l)

s.t. A0x >- 0

where x is an n-vector and A. is an mxn matrix of constraints, and consider the

program F'(e): .

min C T(e) X (VII.2)

s.t. A(e) x a 0

The case of study is when we need to solve a problem type (VII.2) for a particular

value of the parameter e. Suppose that a direct solution to (VII.2) is difficult, but a solution

to the "reduced program" (VII.1) is comparatively simple. Then it is reasonable to solve

the original program by successive approximations, using a procedure in which the first

phase is the solution to the reduced program, and the second phase is the computation

of a correction to it.
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B. SIMPLCTY AND PROXIMITY.

The success of the perturbation method relies on two factors: simplicity and

proximity.

Linear programs are the simplest class of programs. Within this class, complexity

increases with the problem size. But for any fixed size, obtaining a solution can be

simplified if one uses the specific structure of the programs considered. Given that both

the original and the reduced problem belong to the 3ame class of problems (i.e. linear

programs), the next factor to consider in order to determine simplicity will normally be the

possibility of admitting direct aggregation or decomposition, discussed below.

A formal measure of proximity of the original to the reduced problem is

A = sup [supxERlc(x)-co(x) , supx.RIA;(x)A0Ljx)I. 1=1 ...,w] (VII.3)

Generally speaking, the smaller A is, the closer the solution to the original problem

will be to that of.the reduced problem. One would like to express the error of the solution

approximation as a function of the nroximity.

Some types of structure adr, - direct simplification are considered next. They can

be classified as:

(a) Directly decomposable programs;

(b) Directly aggregatable programs;

(c) Directly aggregatable and decomposable programs.
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1. Direct mPOab ProW

Let a proWgra have the form

min CZ + CA•+Z ... + CZk (VII.4)

where zi = fi (xi) , the different xe being vectors of disjoint subspaces of the

global space containing the vectors x satisfying the linear program (VII-4). And let the

objective function be monotonically increasing (i.e. the c's positive). Then to solve this

program it is sufficient to solve k independent subproblems

min f,(x') (vII.5)

s.t. x E X,, s = 1, 2, ... , k

A linear program is close to being directly decomposable when it has the form

min cz + Ec'x

s.t. A.z + EAx > 0 (VII.6)

where

x (x1, x ,...,xk)

z,= z(x '), x" a X,

These are problems in which the state of each subsystem is determined by

its "own" vector x', and the activities of each subsystem depend weakly on those of

other subsystems.
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2. OlreeftAei~l Plowas.

Those are problem of te form

min cz

s.t. Az ? b (VII.7)

where z = z(x), x is n-dimensional vector.

Suppose one can solve the aggregated problem

min c z

s.t. g(z) > 0

If z is a solution to the aggregated problem then x = z - (z ) ,when

solvable, is a solution to the original problem.

EXAMPLE. The following simple transportation problem (represented in Figure

15):

min 3 (x,, + x2) + 2 Nx13 + xI4) + 4 (x• + x,) + 5 (x23+x,•

s.t. x11  X12 x 13 + x1 4 = 10

x2, +x22 + + = 14

X11 - X21 a

x12 + x 21  -5

X13 *÷X2n= 4

X14 + xft, 7

X,~ 0

64



Supply Demand

-8 Supply Demand

4
+10. -3+05 1

+14 > <- "4 ÷14 41

5qý -47

Original Problem Aggregated Problem

Figure 15.- Example of Direct Aggregation

can be directly aggregated by grouping the variables in the following form, suggested by

the parentheses above:

z2 = +~•

Z12  X13 X+

Z21  ~X21 X22

Z 2 2  X 2 3 X24

This produces the "aggregated"m problem,
min 3 z,, + 2 Z12 + 4 z2., + 5 z22

&Lf Z11 + Z1 10

z21+ 22= 14

z, = + z2,= 13

z12 +Z22 = 11
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In this case, we aggregated palm of demand nodes having the same tanspotation

costs per unit. The solution to the aggregated problem is:

ZI- 0

z12 - 10

Z21 - 13

and the optimal value of the objective function is 77.

Now if we solve the system

X11 + x1" 0

X13 + x14 = 10

x21 + x22 - 13

xM + xCM = I

XII + X2 - 8

X 2 x X22= 5

X1 3+ x23 - 4

X14 + x2 = 7

we can obtain the following solution (not unique):

Xl - X12 - 0

X 3 = 3; x14 = 7;

X21 = 8; x 22 = 5;

X23 = 1; x24 = 0;

which can be verified to solve the original transportation problem.
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3. DlrecUy Aggiugatabe and Decomqpsabe Probems

Consider the problem

min C, Z, +C 2 Z2 +... +CkZk

s.t. A(z,, z2,...,zJ a 0, (VII.8)

where za = z,(xl), x' e X., s = 1,2,...,k. Here the objective function does not have to be

monotonically increasing. One can obtain solutions z. to the aggregated problem,

min c z

s.t. g(z1, z.....zJ 2! 0 (VII.9)

If there exist solutions x!" of the equations zS (x 8) = z then the

vector x = (x 6 ) is a solution to the general problem.

EXAMPLE: Depicted in Figure 16 is a transportation problem with this

structure. For sake of simplicity we avoid data in this example. It consists of two

"independent" transportation subproblems, each of them with directly aggregatable

structure. This structure is granted by a relationship between costs parallel to that of the

example in section B.2 (i.e. costs from a node to successive and disjoint pairs of adjacent

nodes are equal).

To solve the problem on the left we solve to optimality each of the two

independent subproblems. To solve each subproblem, we can take advantage of the

special structure determined by the costs relations above.
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Supplies Dowds supplies DeAnds

(a) original problem (b) related problem

Figuwe 16.- Directly Aggregatable and Decomposable ProblenL

The details of such a problem are difficult and tedious, and it is felt that the

underlying ideas may be more easily appreciated using the schematic presentation in

Figure 16 than by exhaustive analysis.

C. OPTIMAL BASIC SET INVARIANCE

Let F'(e) be the linear program defined as

min C T(e) x

s.t. A(e) x = b

x >: 0 (VI6.10)
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with corresponding reduced problem

min C0 x
81t Aox -bo (VI.1 1)

x>O

Let D*(O) be the dual problem associated with F*(O), i.e.

max bj'L

s.t. Ao % (VII.12)

Suppose that xo, ,o* are optimal solutions to (VII.11) and (VII.12), respectively,

and furthermore, they are unique. Then there exists a submatrix B of the matrix A, such

that

Bxj = boa (VI1.13)

X; > 0 (VII.14)

BTXo = CB (VII.15)

N TX.o > CN (VII.16)

where

xe is an m-vector of basic variables, x; = (x;, j EJo)

Jo is the optimal basic index set (used next),

B is (A, je•Jo) (submatrix formed by columns associated with the optimal

basic index set),

N is fA1, jJJ)

C8  is {Cqo, WJo)
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CN is Icq. JjJoJ

The condition (VII.16) guarantees the uniqueness of the solution; (VIi.14) is the

nondegeneracy condition and guarantees the uniqueness of the solution 1)o of the dual

problem.

The optimality conditions for the perturbed program are:

A(E)x(E) = b(E) (VII.17)

x(F-) a 0 (VI1.18)

A T(F)) (e) > c(F) (Vi,.19)

x T(E)[A T(E);.(C) - C(C)] w 0 (VII.20)

here, (VII.17) and (VII.18) express the primal and dual feasibility; (VII.20) is the

complementary slackness condition.

THEOREM (Optimal Basic Set Invariance): Let A(e), b(e), c(e) be continuous functions

for e c [0, c'J. Let the solution to the reduced problem (2) be unique and nondegenerate.

Then there exists a positive upper bound r .. c' such that, if 0 < e _< r" then the optimal

basic set of the perturbed program (1) is invariant, and its unique solution is given by

x '(10 = [xi(F-) xQF()]" (VII.21)

where

x;(C) is {X'(E), jEJo} = B'-(e)b(e) (VII.22)

XN() = 0 (VII.23)
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S(c) -(B-1)T(E)i(c) (VII.24)

Note that the set J0 consists of the indices in the base of the reduced problem. So the

claim here is that the set of indices for both optimal solutions of the reduced and

perturbed problems are the same. Then, to obtain a solution to the perturbed program it

suffices to solve the reduced problem, determine the optimal basis index set, and solve

(VII.13) to obtain xB () . Finally, make XN(E) and x" (e) = [xB(e) XN(C) I

Sketch of proof: Let xo = [Xo, XoN] be the unique and nondegenerate optimal

solution of the reduced problem. It must satisfy the optimality conditions (VII.13-16).

Substituting (VII.13) into (VII.14) and (Vii.15) into (VII.16),

B-1 (0) b(O) > 0 (VII.25)

B T(0) (B -'IT(0) C,(0) > CN(0) (VII.26)

Now, if A(c), b(E), C(E) are smooth enough, for E sufficiently small

B-'(c) b(c) > 0 (VII.27)

B T(E) [B-IfT(c) cs(c) > cN(C) (VII.28)

Inequalities (VII.27-28) check the validity of x (e) defined as in (VII.21) as an optimal

solution to the perturbed problem.
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So far, we are determining only the indices of the solution x(c) that form the

basis, but not the magnitudes of the associated components. This is achieved using the

following corollary.

COROLLARY: Let A(s), b(s) be differentiable up to and including order m. Then there

exists an E" such that, for all E e (0, E*J, the solution xj (e) may be written in the

form

x "(C) = x; ex (1) ÷ X (2) + . mX (M) + 0 (Cm.1) (VII.29)

If

A(E) = A0 + sA1 (VII.30)

b(E) = bo + .b1  (VII.31)

c(E) = co + scI (VII.32)

then using conditions (VII.21-22) we can rewrite formula (VII.8) in the form

(Ao + e' 1) (x; + 6x ) + ex 'x(2 - . x(m) ÷ o(eml)) = bo + cb1

or, expressed in powers of s:

(A•x" - bo) + F (A•xo +•Ax(') - b,) * C2 (Ax(') . AOX( 2)) + . 0

in which the first term is identically zero, and the other terms give the following recursive

relationships between successive vectors x('

Aox(') = b, -Alxo

Ax (2) - A,x(1)

.. . ...........o ..°.oo ~ .o.o, o..o..... ..... .... ..

AoX(k-1) - AMX(k) (VII.33)
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and using condition (VII.32)

F'*() -= F + ([ I.x )T (b, - Ax;) ] o(

F "(c) F; - eF" O(e, Oiecge" (VII.34)

Thus, we have a complete result for the case of uniqueness and nondegeneracy.

The results above can be generalized for the case of nonuniqueness, provided

special conditions are met. Let conditions (VII.30-32) hold, and suppose further that

e" is the set of solutions to the reduced problem,

A* is the unique dual solution.

Then

F(E) - F" + c ÷F O(c2) (VII.35)

with

F" J +" + bT V" (VII.36)

where J: is the optimal value of the objective function for the following "auxiliary

problem":

min c, - AT X

x 6 W (VII.37)

The mentioned special condition requires the solution to the "auxiliary problem" must

be unique and be also a nondegenerate solution to the reduced Problem.

The application of the results above to linear programming problems can be

summarized in the following outline of an algorithm:

(1) Solve the reduced program and its dual;

(2) If the solutions in (1) are unique, then J0 determines the optimal basis for the

perturbed problem;
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(3) Determine x(e) as a solution to B (G) x = b (e)

(4) If the solution to the reduced program is not unique, but it is nondegenerate, then

- determine the optimal set 0-

- Solve the *auxiliary problem* (Vtl.37);

(5) If the solution obtained in (VII.37) is unique, it determines the set J0 and the matrix

B(e). Then go to (3).

(6) If the solution obtained in (VII.27) is unique but degenerate then we need to

determine the optimal set A of the dual program and to solve the dual auxiliary

program;

(7) If the solution obtained in (6) is unique then the corresponding basis gives J0 and

B(E). Then go to (3).

Figure 17 represents this flow in a schematic manner.

The work presented up to this point is intended to familiarize the reader with some

of the basic ideas of optimization, network problems and optimality conditions, and the

optimization methods that could be considered as members of a wide family of multilevel

methods (in which also some aspects of the techniques described in this Chapter can be

included). We are in position to describe the peculiarities of the multigrid methodology, to

be done next in Chapter VIII. Finally, the objectives of the research will be addressed in

Chapter IX.
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Fiure 17.- Perturbation Method. Flow Diagram.
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VIN. THE MULTIGRID METHOD

A. INTRODUCTION

Detailed descriptions of the multigrid method are given in Briggs, 1987, or

Hackbusch, 1980. Here we will summarize the essential facts that could help in building

the appropriate approach to solving certain types of optimization problems by means of

that technique.

Consider the problem of heat propagation along a finite rod of unit length. This is

a boundary value problem expressed by the second-order ordinary differential equation

-u" + au = f, 0 < x < 1, a > 0,

u(0) : u(1) = 0 (VIII.1)

where u and f are functions of x. Numerically, the problem can be solved using

a finite difference method (Gerald, et al, 1989). The domain of the problem is

partitioned into N subintervals of constant length h = 1/N. The partition so obtained

defines a grid of N+1 points, including the end points 0 and 1. The resulting second-

order finite difference approximation produces a system of linear equations

A x = f (VIII.2)
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The system (VIII.2) has the folowing special structure:

2 +oh2  -1 V, f'

-1 2.ah 2 -1 V2 42

1 . .
h--i.. I (Viii.3)

vN-2 fN-2

-1 2+Uh2  VN.L f'N-I

Equation (VIII.3) is sometimes abbreviated by the difference stencil (Hackbusch,

1980), as follows:

h"2 [-1 2+ah2 -1] v = f

Conventional iterative methods of solution use an initial guess V(O) as initial solution.

The proximity to the true solution u is measured by the error e = u - vI), which can be

regarded as the exact correction to the (in this case) initial guess. The error is unknown.

One way to estimate this proximity is by using the residual. So, if v is an approximation

to the true solution, the residual r is defined as:

r = f - Av = Au-Av = A(u-v) = Ae (VIII.4)

In (VIII.4) the residual r measures how well v solves (VIII.2).

The expression

A e = r (VIII.5)
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is called the rie/dual equlatin. It is important to note that the residual equation uses the

same matrix as the original equation. This is the first key fta

Conventional iteration processes are represented as

vM .• P v(°) ÷ 9. (VIII.6)

where P is the iteration matrix. The error after n iterations is

e(n) = U -V') = (Pu+ g) (Pv-'1 )+g)

= Pu- P vrl) = P(u-v"-1)) = Pos'-),

therefore

1•(n), . p i I P I" I (° I (VIII.7)

It can be shown that

lira Pn = 0 if and only if max I ,(P) < 1 (VIII.8)
n•--' I

where 1i (P) are the eigenvalues of P. This suggests that not all linear systems of

equations can be solved using these conventional iterative techniques. The success using

those approaches will depend in the structure of the matrix A defining the problem.

Assuming the problem is solvable and the matrix A nonsingular, the error e(°)

corresponding to the initial guess of the solution can be expressed as

N-i
(O) = C, W (VIII.9)

k-1
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where ck is a real coefficient, and wk, k 1,2....,N-1 are the eigenvectors of A.

A second key fact is that the error is smoothed by conventional iterative methods.

(See Chapter I). The fact allows that, after k iterations, e00 can be usually

approximated with fewer points than vk), This can be exploited to represent e@ on a

coarser grid.

In the case (VIII.), the eigenfunctions have the form of sine functions (Fourier

modes). The ke eigenfunction is expressed as

Wk = Ck sin (k n x) (VIII.1O)

k is called the wavenumber, equal to the number of half cycles which constitute v in

the domain of the problem.

Correspondingly, the km eigenvector of the matrix A in (VIII.2), expressed as a one-

dimensional array (vector) of N equi-spaced sample points has the following form for its

components:

Wk, = sin(j- ) with 1 < k:5 N-1 and Osj<N (VII1.11)

and we say that the vector is represented in a N-grid.

In multigrid, grids are denoted in terms of the distance 'h' between two consecutive

points of the grid. If the mesh size is h then we denote the corresponding grid as ft. For

this last to make sense, it is necessary to have fixed the total length of the grid domain.

As an example of a class of problems in which multigrid techniques are successfully

applied, Figures 18 and 19 represent the results of applying a conventional Jacobi iterative

process to the system of linear equations corresponding to the heat propagation along a

rod of unit length. The problem, stated above, is described as an example in Briggs, 1987.
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Figure Ml- Change in the Error Vector.
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Here we have modified the setting to be more general in that we allow the right hand side

of the system to be other than zero. We chose the values of the right hand side to be

integer random numbers. The details and the Mathenatica" code used to solve the

problem are included as Appendix C. It also contains the numerical values of the right

hand side vector, and some intermediate results that could be used for checking

purposes.

A total of 200 Jacobi iterations were performed. Figure 18 shows the change in the

error vector. An arbitrary oscillatory error was introduced as initial value, a consequence

of the oscillatory initial guess for the solution. It can be seen that the error becomes iess

and less oscillatory, as the number of iterations increases. (It is easily seen that the

number of crossings of the error curves through the x-axis decreases with increasing

iterations). After 199 iterations, only a very smooth wave remains. This kind of behavior

in the error is required for multigrid techniques to be successful. For completeness, we

also graphed the change in the residual vector. This is represented in Figure 19.

A second example was constructed having the solution shown in Figure 20. This is

a more oscillatory solution. The next figure shows the evolution of both error vector and

current solution after a few iterations are performed. Notice the smoothing of the error,

despite the lack of smoothness in the current solution.

The program included in Appendix C allows for an "animated* picture of both error

and residual vectors for the first example. Also, it can be used for studying different values

of the right hand side vector.
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0.002

-0.002

-0.004

Figure 20.- True Solution for Second Example.

B. GENERAL MULTIGRID SCHEME.

In section A we have seen one condition for multigrid to work, i.e., the error vector

should be smoothed as the iteration progresses. Now let us examine what happens to the

error when appropriately "moved" from a finer grid to a coarser grid. Suppose tMat our

error vector is sufficiently approximated by a wave with wavenumber k = 4 (Figure 22(a)),

posed on a grid with 12 grid points, which we will refer to as Qh . Furthermore, suppose

that there is no higher frequency component in the error vector (i.e. an iterative process

has taken place that eliminated them previously). The former grid is capable of "detecting"

frequency components with wavenumber less than k = 12, as can be seen in Figure

22(b)(c). Note that the wave with k = 12, N = 12 is indistinguishable from the wave having

k=0, N=1 2. Higher k's cause an "allasing" phenomena, depicted in Figure 23(d) (they are
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Figure 21.. Second Example. Evolution of the Error Vector and Current
Solution.
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Figure 22.- Representation of various components of the Error Vector.
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Figure 23.- Representation of various spectrum components of the Error Vector

(cont).
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confounded with other less oscillatory waves).

Let us go back to our error k = 4 wave. In the spectral representation of the

"detectable" waves on the N = 12 grid (Figure 24(a)) this wave lies in the first third of the

spectrum. We can say that it belongs to the class of the spectrum's low frequency

components, defined as those waves located in the first half of the spectrum.

Now let us express the corresponding spectrum for a N = 6 grid. This is done in

Figure 24(b). Now the range of "detectable" waves goes up to k = 6. In this

representation, the wave with k = 4 is located on the second/last third of the spectrum. We

can say that this wave is a high frequency (or oscillatory) component, a term defined

in a similar fashion as in the preceding paragraph. Thus, our error vector becomes more

oscillatory when transferred to the coarser grid. This is a third key fact.

Figure 24 helps in understanding one of the basic mechanisms of the multigrid

technique. Whenever the error vector is formed only by low frequency components in the

relative context of a grid, we can force it to become more oscillatory by transferring it to

another coarser grid. Typically, this is done doubling the grid mesh (i.e. halving the

number of grid-points). This action is supported by invoking the fourth key fact: an error

that is smooth on a grid Oh can be accurately transferred to a coarser grid W2h and

furthermore, the error representation in Wh contains enough information to be

interpolated to the next finer grid f? and produce an accurate representation of the error

there.

Now we can point out what the multigrid approach is in the above problem. Figure

18 represents the smoothing of the error vector when iteration is in progress. So we relax

(iterate) on a grid until the error representation is "sufficiently smooth" on that grid. The
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error then can be accurately represented on a coarser grid. This transfer is accomplished

without loss of information. But now, the error representation on the coarser grid appears

to be more oscillatory. A second relaxation process in this new grid will eliminate the

"new" oscillatory components faster. When the relaxation process shifts the error to the

low frequency area of the spectrum it is time to transfer it to a new grid, still coarser, and

so on.

Two strategies form the core of the multigrid technique. The first of them solves a

problem on a coarser grid to obtain an initial guess on the next finer grid. This is called

nested Iteration. The idea is to find an initial guess with little computational effort, by

means of building the initial guess on the next coarser grid. A basic principle lies under

this idea: it is cheaper to find a solution if the initial guess is good, and nested iteration

provides a good guess cheaply. The second strategy uses the residual equation to obtain

an approximation to the error in the present grid. That approximation is computed by

relaxing the residual equation on the next coarser grid. This version of the error is

translated back to the current (finer) grid to be applied as a correction to the present

representation of the solution vector. The advantage is that it is cheaper to work on a

coarser grid. This second strategy is called coarse grid correction.

The operation that involves transferring from coarser to finer grids is called

interpolation, while the opposite operation, i.e., transferring from finer to coarser grids,

is denoted as restriction. Although in the standard multigrid methodology the operators

performing those processes are linear, in general interpolation and restriction could

conceivably be nonlinear operators.
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Figure 24.- Spectral location of a k = 4 wave in grids with N =12 and N =6
respectively.

The way one combines iterations at the different levels of coarsening yields several

multigrid patterns, known as multigrid cycles or schemes. The most common are the V-

cycle, the gi-cycle and the Full Multigrid V-Cycle, described by Briggs (1987). We will

briefly describe them next.

1. p-Cycle

It is schematically represented in Figure 25. The operations performed are:

(a) Relax v1 times on the initial grid 9" with a given initial guess v'; these

relaxations (iterations) make the error eh become smooth.

(b) Restrict the residual equation to the next coarser level f. Since the structure of

this problem is a parallel of the original problem, solve this residual equation
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recursively, by a call to the Ig-cycle. Do this ix times. As a result, we obtain an

approximation for e•.

(c) Interpolate to obtain an approximation of *h on the fine grid Uh.

(d) Add the error eh to vh to obtain an improved approximation for vh.

(e) Relax v2 times the equation Ah Uh = fI with initial guess vh computed in (d).

Achieving the vector vh by (a) through (e) is done much more rapidly than

proceeding by (a) alone. This "speed-up" in the approximation process is obtained thanks

to the third and fourth key facts described earlier in this chapter, that allow for working on

a simpler grid (fewer points), thus making the computational work less. Concurrently, the

oscillatory components of the restricted error are eliminated quickly by the relaxation

steps. This is a crucial fact in multigrid.

The V-Cycle is a particular version of the ii-Cycle, for the special case that

= 1. When ii = 2 the resulting scheme is called the W-Cycle.

2. Full Multigrid V-Cycle (FMV)

The FMV is depicted in Figure 26. The representation is taken from Wesseling

(1992). Other authors (Briggs, 1987) consider the scheme starting at the coarsest grid (i.e.

the initial coarsening to the coarsest grid is implied, and not shown). Briefly, the

operations performed are:

(a) Restrict the original equation to all grids (in particular, to the coarsest).

(b) For k = 1, 2, .... M (coarsest grid)*

Solve AHUM = fH by performing a ;X-cycle vo times;

Interpolate to the next finer grid, i.e. from fj' to flh (usually h = H/2);

Repeat until the finest grid is reached.
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Figure 25.- Schematic representation of the Multigrid /-Cycle.

This chapter has presented the principles and mechanisms of the multigrid method.

We are now prepared to analyze the feasibility of such an approach to the solution of

optimization problems.
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Figure 26.- Full Multigrid Cycle. (a) v. = 1; (b) v. = 2 (not completed).
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IX. APPLYING THE MULTIGRID METHOD IN OPTIMIZATION: THE LONG
TRANSPORTATION PROBLEM

A. INTRODUCTION

In Chapter VIII we have seen that multigrid is not a specific solution technique, but

rather a philosophy of attacking problems that is general and powerful when applied to

suitable problems. Specific solution techniques must be used. The restriction and

interpolation operations are general concepts that should be defined in the context of each

problem. It is the idea of changing the grid when the error is smooth that characterizes

multigrid, as well as the idea that a solution in a "simpler" grid is a good starting point for

attacking the problem on the next "finero grid.

The next two sections list the characteristics of the types of problems that

traditionally have been solved using multigrid, and a comparative list for the class of

problems that typically are solved by optimization. Section D reviews some previous

research. The objective in sections E and F is to extract the positive lessons from these

analyses, point out the difficulties found and analyze them. Some insights into the

multigrid method are included with conclusions that hopefully will aid the better

understanding of the optimization procedures that could support the implementation of

algorithms based on the multigrid methodology.

B. CHARACTERISTICS OF MULTIGRID PROBLEMS

Multigrid methods have been successfully applied to solve certain partial differential

equations. These kind of problems, when solved numerically, are approximated by
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systems of algebraic equations. Restricted to the linear case, we observe that these

problems are characterized by the following common features:

They usually correspond to physical processes, i.e., energy propagation,

variation of space parameters when the subject is exposed to a system of

forces, etc. In general, these type of problems describe phenomena in which

there is a weak influence between pairs of local states corresponding to areas

located far apart in the system.

The system of equations that describe the phenomena usually express the

influence of particular values of the solution (energy, speed, flow, etc) on a

certain neighborhood of their space. In the example case of heat propagation

through a rod, every row of the matrix A representing the system is obtained

by a pattern of values that affect immediate neighbor components of the u

vector (see chapter VIII). The zeros in each row of the matrix express

mathematically the weak effect mentioned above, in the sense that

interrelation between variables is restricted to the (neighbor) columns having

nonzero coefficients.

The weak global dependence between grid points determines its

behavior through successive iterations. That is, given the state of the system,

the local variation induced by a variable change is propagated as a sequence

of local interactions, and the resulting state of the system is, in general, very

close to the initial one.
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The problems are originally posed on a continuum. For computation purposes,

the problem is discretized. The initial values of the variables, represented as

vectors, constitute a sample of the continuous variables of the problem.

Similarly, the solution vectors obtained are samples of continuous variables.

For a sufficiently fine grid, if we express the values of the n variables at the

grid points as n-tuples, the knowledge of the n-tuple corresponding to a grid

point gives us some information about what the coordinates of the neighbor

grid points could be. We can express this property, inherent in continuous

functions, by saying that the problems have an Implicit ordering in the

composition of the solution vector. In Figure 27(a) a sample vector of x-

values is represented. The dark area corresponds to the continuous set of x-

values. The implicit ordering is materialized by the function f(x). This property

is important for interpolation purposes.

These problems are convergent when solved by iterative processes. That is,

when the same problem is solved, using progressively approximated solutions,

the error becomes smaller and smaller. This is typically expressed as the error

being O(hP) for some p.

As a result of being exposed to iterative procedures, the error term is

smoothed. Thus, after some number of iterations little improvement is

achieved, since smooth errors are very slowly reduced.

95



__________________________________________ (a)

X XX X XX X X X XX X X X Xl X X
1 2 3 4 S 6 7 a 9 10 11 12 13 14 x i 6 17

xI xXX XXX it x 12 13 14 x1 16 17

Figure 27.- X-Vector (a) PDE Problem; (b) Optmination Problem

Since the error is not available, the residual is used as a reference of the

progress in the solution process. Although not necessarily the case, the

residual is normally a good reference for this purpose.

The restriction operator transfers the problem from a grid to the next coarser

grid. This means that it needs to define the different aspects of the problem

on the coarser grid. The interpolation operator performs the opposite

operation. The fact that these problems possess a strong local coupling,

together with the fact that the solution vectors are samples of continuous
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sets, are key features for the interpolation process to work properly. In

standard multigrid, both operators are linear.

C. CHARACTERISTICS OF (UNEAR) OPTIMIZATION PROBLEMS

The previous chapters have considered some optimization principles and techniques

that could support a multigrid approach to solving (linear) optimization problems. Let us

focus, for simplicity and consistency, on transportation problems.

- In general, they are constrained problems. They usually carry an associated

set of linear constraints. This set is expressed as a matrix, and is used to

check for the validity (feasibility) of the current solution. As the computation

proceeds, the current solution vector solves a system of equations defined

using only a submatrix (basic submatrx) of the constraint matrix.

- The objective of the problem is find a set of values for the variables that

minimize (maximize) a function (objective function) of the n variables of the

problem. There is no parallel concept to that of the residual in the solution of

the systems of equations. On the other hand, since the main goal is maximize

(minimize) the objective function, there is a valid reference (at hand) of how

close we are to the solution as the process proceeds. This is because, at

each step, bounds for the optimal value of the objective function can be

calculated, providing a means to measure that proximity. (Notice that usual

optimization algorithms, i.e., simplex method, keep track of the best solution

obtained and bounds. They proceed "improving" the current objective, so that
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as more steps are performed, the bounds on the objective function are

narrower).

Contrary to the PDE case, the current solution (including in this term both

initial and final solutions) is represented by a vector which does not constitute

a sample of a continuous set of values. This is schematically presented in

Figure 27. The set of values of the variables in an optimization problem is (a)

finite and (b) is formed by all the possible data points.

In general, there is no relation of proximity determining the structure of the

equations. That is, contiguous sources or sinks are not necessarily correlated,

they do not necessarily influence each other. Compared to the PDE case, we

can say that, as a general rule, if we knew the value of a flow component x,,

this says little about the values of "contiguous" components xi., or Xl, for

example. There is no implicit order materialized in the form of a relationship

like f(x) in the continuous case (a).

When the problems are bounded, they have an optimal solution. The optimal

solution may or may not be unique. Optimization techniques yield solutions

generally based on an enumeration process. It is the finite structure of the

problem which guaranties the solution to the problem.
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In most practical problems, each variable has individual bounds. Normally,

these bounds are locally assigned, and constitute an essential parameter in

determining the problem behavior when being solved.

D. PREVIOUS WORK

Ron (1987), proposed the idea of a multigrid approach for the N-city Traveling

Salesman Problem (TSP). This is a standard, NP-complete problem that arises in several

contexts. For a description see Roberts (1984). An estimate of the optimal length of the

closed TSP path L for this case is known to be equal to

L = 0.74O9FN + O(F-N (9.1)

for sufficiently large values of N (Bonomi and Lutton, 1984). The Asymptotic TSP (ATSP)

finds paths within a few percent of the above value. In her research, Ron considers a

number N of cities randomly (e.g. in a uniform distribution) positioned in the unit square.

Instead of taking an arbitrary first approximation (random order of cities), she constructs

an approximation as follows. Coarsen the problem by creating a sequence of [N/21 pairs

of cities (referred as coarse cities), each being located at the mean positions of the two

cities it represents. The pairs are constructed by associating the nearest available one

with each city in turn. Her method was tested in a variety of examples and gave

reasonable first approximations, yet it failed to become a better solver since the coarser

problems are not, in general, geometrically equivalent to the finer problems, and thus the

solution interpolated from a coarser level is not necessarily a solution for the finer one.

Still, for the ATSP she reports results with paths no longer than 30% off the optimal

solution.

99



There are some characteristics in the ATSP problem that makes it attractive to being

approached via multigrid. As the number of cities grows, the minimization processes at

regions of the plane far apart are weakly coupled to each other. Surely, the minimized

path will not jump back and forth between cities far distant from each other, i.e., it is

expected first to visit neighbor cities before switching to other far regions. This implies the

assumption of neighborhood influence, described in section A. That is, the cost of vi:

remote cities before nearby cities must be relatively large. In such conditions, the reported

results are logically explained. However, from the optimization theory standpoint, the

computational results cannot be considered attractive. Ron reports better results in

applying multigrid to a physics problem, the Ising spin problem, which is the core of her

thesis.

Kaminsky (1989) proposes an algorithm for the long transportation problem using

multigrid techniques. Presumably, the selection of the long transportation problem for

experimentation comes from the fact that origin nodes, being small in number, are left

intact, i.e., they do not change through the process of being exposed to the different grids.

This simplifies the problem. He defines the problem as a geometrical transportation

problem, because of the additional. assumption that origins and destinations have

locations in space, and the cost of shipping between any pair of origin-destination nodes

is related to the distance between them. (The idea of intrinsic ordering appears in the

setting of this problem, allowing it to be posed as multigrid). Kaminsky uses aggregation

to define the coarse destinations. Two neighbor nodes on grid h are aggregated into a

single node in grid 2h, with demand equal to the sum of the two demands. Supply nodes

are not aggregated. Two different rules are used to set the costs in the coarser problem.
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The first rule is a "weighted aggregation? (Zipkin, 1977), which provides the best initial

solution, compared with other schemes. The second rule, valid for subsequent steps,

makes use of a previous state of the problem. In this rule, the costs to coarser

destinations are the dual solution values associated with each origin node when solving

the associated block problem. This block problem is defined for a single coarse node.

There are as many block problems as coarse destination nodes at each level. The

interpolation process (coarse-to-fine grid) is the solution of the block problems themselves.

In Figure 28 there is an interpretation of an individual block problem. The values Xu are

the flows computed when solving the coarse problems, i.e. flow from supply node i to

coarse destination J.

Of special interest is the discussion that Kaminsky provides on local relaxation in

Chapter 5 of his thesis. A process similar to that of coarse to fine interpolation is applied

to a subgroup of destinations to "improve" the current feasible solution at a determined

state of the problem. This involves solving a linear programming subproblem. The reports

of the experimentation are that, by applying such method of relaxation, the results are

ineffective in improving a solution in which the origins supply sets of destinations that are

contiguous in the space. But this is exactly the expected character of the optimal solution

(regionalized solution). The converse is true when the solution is not regionalized. The

best way to do local relaxation is left as an open question. Even so, his reported results

can be considered an important step towards multigrid-based optimization solving

techniques.

Cavanaugh (1992) removes the spacial dependence of shipment costs in an attempt

to generalize the problem proposed by Kaminsky. This extension is important, since many
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of the problems - a large majority in real-life - that can be formulated as transportation

problems have no physical space interpretation. The addition of graph-theoretic properties

to the multigrid components makes his work attractive. He considers the proximity of

nodes in the cost space, which we define as follows:

Given a transportation problem (TP), consider the set c of m-tuples (c1, c2, ... , cm),

where the c's are all the possible costs that could be assigned to the shipment of a unit

of commodity from origins 1, 2, ..., m, respectively. The set c is referred to as the

cost spme of the transportation problem TP. We can also say that TP is defined on the

cost space C. The cost space is an m-dimensional euclidean vector space. For practical

purposes, sometimes we restrict the ci's to be integers and, sometimes, to nonnegative

numbers. For each particular transportation problem the set of arc costs is a finite subset
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of its cost space. Each destination node j has an associated point in the cost space

defined as (c1,, cý ... ,c•). The k coordinate of destination node j is the the cost cý of

shipment to it from supply node k.

Cavanaugh, like Kaminsky, uses aggregation of nodes (in the cost space) to design

the problems associated to the coarser grids. Also as in the previous work, there is no

limit on the capacity of the arcs defining the associated network. The way nodes are

selected to be aggregated is as follows: the demand nodes are first sorted by increasing

cost of shipping from supply node 1, and divided into two groups about the median of the

sorted cost (Figure 29(a)). Each of the resulting groups are then subdivided into two

groups, the criterion now being the cost of shipping from supply node 2 (Figure 29(b)),

and so on. For simplicity, Figure 29 represents a problem with only two supply nodes.

Each group created in this way is then sorted by the same method, generating smaller

groups. The process is repeated until groups of size 2 are all that remains.

The interpolation process solves similar problems as those mentioned in Kaminsky's

thesis. But Cavanaugh makes use of the tree structure of basic solutions and the special

characteristics of the transportation problem to speed up the calculations. Also he

introduces the use of reduced costs as a measure of optimality.

The local relaxation process is by cycle-removal. When interpolation is performed,

a set of local problems is solved. These problems produce locally optimal solutions. Since

all the local problems share the same set of supply nodes, when constructing a global

solution from the local solutions a certain overlapping takes place. This causes the graph

of the global solution to have cycles. Cycles must be eliminated for the solution to be

optimal. To check for cycles, two adjacent Mx2 local problems are chosen and the flows

combined to form a solution to an Mx4 "regional" problem. Cycles are sought and
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Figure 29.- Cavanaugh's coarsening of Demand Nodes

eliminated. This produces a local relaxation scheme. The mechanism for the cycle

removal is inspired by the one used in GNET (Bradley etal, 1977). Cavanaugh's multilevel

algorithm performed well on problems with only two or three supply nodes. His solutions

on problems consisting of 3 supply nodes and 1024 demand nodes are 8.41% above

optimality using cycle removal. For 5 supply nodes and equivalent problem size, the

results are at least 58% above optimality, which cannot be considered very promising.

Cornett (1993) continues the research on the long transportation problem. Node

aggregation in cost space is the selected mechanism for restriction. In Cornett's work,

regular grids in cost space are considered for a problem consisting of three supply nodes.

With this scheme, nodes are grouped together with other nodes lying close each other in
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absolute terms. This way, the influence of local variations is more "controlled", in an

attempt to restrict the effect of variations to the close neighborhood. Multigrid methods

tend to perform well in such conditions. In the regular grids presented by Comett, once

the mesh size is determined for a grid, the cost space is partitioned in elementary

polytopes, determined by intersections of the coordinate planes. The points of the grid are

the vertices of the elementary cells. The cells surrounding each grid point define an

elementary cell in the next coarser grid, and so on. Notice that the cost space is also

partitioned in this coarser grid (no overlapping occurs), so not all the grid points are

centers of cells in the next grid. Figure 30 represents a regular grid, formed by the small

circles. In that figure, two filled and larger circles represent points in the next coarser grid.

Notice in the figure that grid points located on each side of a cell are shared by two

consecutive cells. Also those located on each edge are shared by four, and those on each

vertex are shared by eight cells.

The restriction operation defines the demand of a point in the coarser grid by the

weighted average of the corresponding cell-demands (denoting by cell to the set of points

included in the elementary cube centered at each coarse point).

The interpolation process divides the flow on a coarser node "proportionally" among

its corresponding cell demands in the finer grid. The flow coming from each of the supply

nodes is considered as the set of supplies, so defining a coarser node subproblem. The

global solution is then obtained combining the solutions obtained from these local

subproblems.

The relaxation procedure used in this approach consists of a check that every

demand node has been served in the cheapest possible way. For those flows not passing

this test, a pair of temporary supply-demand nodes are created. The supply-demand
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values of these pair of nodes corresponds exactly to the flow that has been determined

to be non-adequately distributed. Each created pair is then associated with a flow in the

current global solution. This flow is removed from the current solution. When all such pairs

of temporary nodes have been created, the complete set of temporary nodes, and their

corresponding supply and demand values, define the flow that, in the current solution, is

considered to be not-optimally allocated. A new transportation problem involving only

those flows is created and solved, and its solution combined with the part of the flow

optimally distributed, so obtaining a new current solution in the relaxation process.

Actually, a maximum of only one node is created for each of the existing nodes, and the

supply (demand) of that node increased by the value of each non-optimal flow. Therefore,

at each step, the original problem is divided into two parallel problems, one containing the
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part of the flow vector considered "optimal', and the other containing that part of the flow

vector considered "not optimal". As a result, the relaxation process improves the flow at

each iteration.

By using the above scheme, Cornett designed a V-cycle type algorithm that solved

problems with 3 supply nodes and up to 29,791 demand nodes within 4% of optimality,

using up to 5 grid levels in the design scheme.

E. RESEARCH OBSERVATIONS

At this point, it is useful to reflect on the research process in order to extract some

positive lessons and to point out other possible causes of problems. This is in fact one of

the objectives of the present work.

Two facts deserve special attention when studying the works described above. They

will be considered independently.

1. Node Aggregation

Node aggregation has been viewed as the natural way of restriction. It

presents the following advantages: (a) the coarsened problem is the same type of

problem, and (b) has fewer nodes. The first property is typical of multigrid contexts. And

the second, due to the combinatorial nature of optimization problems, reduces effectively

the computational effort needed to solve the coarsened problem.

For node aggregation to be suitable for multigrid use, it should maintain the

general property of multigrid: local effects must propagate weakly. In this sense,

aggregation of nodes causes two conflicting effects. On one side, grouping of neighbor

nodes maintains a hierarchical structure when going from grid to grid. On the other side,
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the way nodes are grouped may reinforce global influence. This is illustrated in the

following example.

Consider a simple transportation problem with two supplies and eight demands

(Figure 31). When grouping nodes following the rule used by Cavanaugh one would arrive

at the groups depicted in (a), in opposition to the more natural groupings of (b).

Kaminsky uses two different rules for node aggregation. In one algorithm, the

total area of the problem is divided into two Osub-blocks* by a line in the direction of the

x-axis. Each one of these sub-blocks is then divided by a line in the direction of the y-axis,

and so on. This could also lead to situations parallel to that depicted in Figure 31, but in

the physical space.

A different approach is proposed by Kaminsky in his second algorithm. Here

a "bottom-up" blocking is achieved by constructing a graph whose vertices are the

destinations in the fine grid. Each destination is connected to the nearest four destinations

in space. Then the destinations are blocked by finding a maximum cardinality matching.

There is nothing that prevents extreme matchings like that in Figure 32(a), hiding the

natural structure of the problem, shown in Figure 32(b).

2. Regular Grids

Regular grids appear to better deal with the circumstances described in the

previous paragraphs. But they also present some disadvantages.

Setting the long transportation problem on a regular grid tends to preclude the

pairing of distant nodes (in cost space). Furthermore, the local effects affecting the state

of the problem tend to propagate in a more "controlled" way, since the area of immediate

influence of a node consists of a group of nodes which do not necessarily exist in the
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Figure 31.- Two different Aggregations of Nodes in Cost Space.

actual problem. It could be said that regularity is used in an attempt to force predictable

behavior.

We can describe the effect of a regular grid in an intuitive manner observing

Figure 33. The original problem (a) is shifted to a regular grid (b) that is finer than the

original setting (which now becomes a coarse grid). As a consequence, the gaps of the

flow vector x in (a) are regularly filled with intermediate flows in (b), making the vector x's

costs "appear" as a sampling of cost locations of a more populated cost space.

In normal sampling (the PDE example), the magnitudes of components of the

x vector tend to stay around the corresponding values in the continuous domain. On the

other hand, in the case just described above concerning regular grids, there is a need to

combine neighbor values to obtain the value of the "sample" in the next coarser grid. One
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can imagine C e difficulty of devising a sampling process (in optimization) such that the

values of flows in successive grid representations tend to converge, when performing

node aggregation in the terms of the previous approaches.

Since the dimensionality of the problem equals the number of supply nodes,

we can imagine that the rapid growth in size of the problem, already pointed out

(Cavanaugh et al, 1992) for irregular grids, will be much more important in the regular grid

case. This limits the practical field of application of regular grids to problems with only a

few supply nodes.
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Figure 33.- Analogy of Regular Grid and Continuous Sampling.

F. CONCLUSIONS

This final discussion connects some of the optimization tools presented in the

previous chapters with the work that has been developed towards the implementation of

multigrid methods in optimization. The conclusions are an attempt to compile the limited

experience in applying multigrid ideas in optimization with the specific optimization

techniques that could play a relevant role when designing multigrid components.

Three aspects will be considered. First is the general question of whether multigrid

should be applied to optimization, or vice-versa. Second, applications of multigrid

approaches to optimization problems will be suggested. Third, the various optimization
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techniques presented in previous chapters are connected to the multigrid process, with

some insights and recommendations for future research.

1. Multlgrld towards Optimization versus Optimization towards Muitigrld

Throughout the present work, this question is a constant: (a) should multigrid

be used as a general way to approach problems, transferring the idea to the solution of

optimization problems, or (b) should optimization techniques be directly transferreo to the

muItigrid scheme and so build a muttigrid scheme with optimization blocks.

The conclusion of this thesis is that the multigrid method is more a philosophy

of attacking problems than a specific solution technique. Multigrid concepts can be applied

in optimization to develop a strategy for approaching problems. But not all the components

of a multigrid scheme are directly transferable to optimization, where problems, in general,

are structured so that local variations typically propagate widely into the global problem.

Nevertheless, techniques and procedures of optimization can be used to handle some of

the troublesome properties that these problems present to a multigrid approach. This is

covered in the following points.

2. Field of application

The previous point leads to the consideration of how general an approach

multigrid is for optimization problems. The study of previous work in section D, led to the

observations in section E, from which it follows that aggregation of nodes is a natural

process to be used as a restriction operation. The experience, however, is not as

promising as it appears at first glance. The associated difficultkl., Oxplained in section E.1

suggest that only problems with a suitable structure are amenable to node aggregation

as a restriction operation. Problems structured so that clusters of nodes can be identified
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are specially oriented to a multigrid approach. So, clueftrng.typ. of layouts are

expected to produce better results. For example, in cost space, the problem represented

in Figure 34(a) has two identifiable clusters of nodes, with each one formed by two pairs,

that can be thought of as clusters at a different level. That kind of layout is expected to

be more successfully solved in a multigrid fashion that the spread layout in Figure 34(b).

Often, when experimenting with algorithms, one tends to randomly construct problems.

This methodology is more likely to produce designs like Figure 34(b). The conclusion here

is that experiments must be designed carefully when node aggregation is the method

chosen for restriction. The number of grids that can be implemented is determined by the

separation between clusters. In general, the distance between two members of a cluster

must be small compared to the distance between two clusters. Furthermore, a new level

with its corresponding grid should be introduced only if the clusters can be partitioned into

groups, such that the distance between groups of clusters is large when compared to the

distance between individual clusters within a group. This process, when iterated,

determines the maximum number of grids that a problem can have. Therefore, the

maximum number of grids that can be introduced is determined by each particular

instance of a problem.

A characteristic to examine in order to determine if a problem is suitable for

multigrid approach is whether there exists a weak relation between points of the grid

located far apart. This can be expressed, for instance, in terms of a function assigning

costs or other problem parameters according to a rule. An example is the case of

Kaminsky's geometric transportation problem. In general, it is desirable that a mapping

could be found so that some of the main defining characteristics of "local" points of the

problem could be gathered together and be given in the form of a function. Kaminsky's
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geometric transportation problem, for example, defines a map between locations in tia

space and costs. With that type of problem design it is possible to check for a cluster

structure favoring multigrid, and determine the depth in levels that can be expected.

Demands play an important role when aggregating. It is conceivable to

increment the dimension of the cost space or the physical space to account for the

demands of (destination) nodes. Another property that could be considered for

aggregation is the likelihood that a demand node be supplied by a given source. This can

be defined in terms of available supply, required demand and reduced cost. In general,

it is unlikely that a perfect mapping could be found defining a preference ordering. Finding

such mapping is probably as difficult as solving the problem itself. Occasionally, a few

properties or parameters have a stronger influence than the rest in determining supply
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policies, and it is in such cases when the structure of the problem can be expected to

support a multigrid approach.

The uncapacitated long transportation problem possesses some individual

characteristics that make it suitable for a multigrid approach. In Chapter III.C we

mentioned the fact that an optimal extreme point solution to a transportation problem has

at most m-1 demand nodes that will be supplied by at least two supply-nodes, while the

remaining at least n-m+1 demand nodes are supplied by only one supply-node. The

implication is that, since n is much larger than m, the number of destinations served by

only one origin is relatively high.

3. Unconventional Grids - Decomposition

The difficulty with regular grids pointed out in section E.2 raises the question

of a less conventional interpretation of the classical concept of grid for optimization

problems.

In his article *Levels and Scales", Brandt(1 985) gives the following illustration

of the favorable characteristics of problems where multigrid succeeds. A two-level

hierarchical structure should operate in the following way. The global government first

gathers some general data summarized at the local level, representing the sum totals of

local needs, important overall constraints, etc. Based on these it prepares preliminary

global plans. These global plans give the local governments the framework for devising

their own, more detailed plans. These global plans do not quite fit the local situation and,

therefore, need some adjustments or corrections. So, in a second round, the global

government again gathers information summarized at the local level, now representing

sum totals of needed corrections. Since in practice this process is seldom fully
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recognized, let alone fully effectively organized, more such rounds may be needed. When

more levels of government are involved, the process is applied recursively, in a variety of

manners.

The ideal operation of the two-level hierarchical government is fully analogous

to a two-grid process. The problem is first represented on the coarser grid (e.g., by

averaging its equations to the scale of that grid). The (approximate) solution to the

resulting coarse-grid problem, once computed, is then interpolated to the fine grid, serving

there as first approximation, a framework, to be next improved by fine-grid processes,

such as relaxation. This fine grid processing finds the fine features of the solution which

were invisible to the coarser grid, and also, as a result, encounters some residuals of

global (smooth) errors, which it cannot effectively reduce. So, in the next round, the

residual problem is approximately transferred, by some averaging, to the coarse grid,

where it can be efficiently solved and its solution is then interpolated back to the fine grid

and added as a correction to the previous fine-grid solution. This is a two-level full

multigrid (FMG). algorithm.

At this point, let us analyze and compare the two-level work of a

decomposition procedure, like those described in Chapter IV. Consider a large system that

is composed of smaller subsystems 1, 2, ..., T. Each subsystem i has its own objective,

and the objective function of the overall system is the sum of the objective functions of the

subsystems. Each subsystem has its constraints designated by the set Xi , which is

assumed to be bounded. In addition, all the subsystems share a few common resources,

and hence the consumption of these resources by all the subsystems must not exceed

the availability given by the resource vector b.
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Recall that the economic interpretation of the dual variables (Lagrangian

multipliers, w) represents the rate of change of the objective as a function of b,. Hence -

w, can be thought of as the price of consuming one unit of the i common resource. With

this in mind, the decomposition algorithm can be interpreted as follows (Bazaraa et al,

1990). With the current proposals of the subsystems, the superordinate (total system)

obtains the optimal weights of these proposals and announces a set of prices for using

the common resources. These prices are passed down to the subsystems, which modify

their proposals according to these new prices. A typical subsystem i solves the following

subproblem:

Maximize (wA4 - c,) x, + o1

Subject to x, in the set X

or equivalently

Minimize (c - wA,) x, -

Subject to x, in the set X

The original objective of the system i is c, x,. Note that Ai xi is the amount

of common resources consumed by the i"' proposal. Since the price of using these

resources is -w, then the indirect cost of using them is -wA, x, , and the total cost is (c,-

wA,)x,. Note that the term -wA xi makes proposals that use much of the common

resources unattractive from a cost point of view. The mechanism is the following.
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Subsystem i announces an optimal proposal xI. If this proposal is to be considered, then

the weight of the older proposals x; must decrease to "make room" for this proposal; that

is 1.1) must decrease from its present level of 1. The resulting saving is precisely %,. If

the cost of introducing the proposal is less than the saving realized, then the

superordinate would consider this new proposal. After all the subsystems introduce their

new proposals, the superordinate calculates the optimum mix of these proposals and

passes down the new prices. The process is repeated until none of the subsystems has

a new attractive proposal; that is, when (c, - wAd)x~k - ai a 0 for each i.

The case of decomposition resembles, although is not exact, the case of the

two-level hierarchical structure described above. The process of decomposition,

conveniently helped by a mechanism to discover "easyr sets of constraints, gives a

method to detect hierarchical structures in problems where they are not initially explicit.

Here the conventional concept of grids is replaced by the more general concept of level,

in order to facilitate a mapping of the problem into a somewhat hierarchical structure.

4. Unconventional Grids - Scaling

We can consider scaling as a multilevel technique. Here we will establish the

parallels between the scaling techniques and the multigrid approach. Recall, for example,

cost scaling. Here, the basic mechanism is work on a state of d2-optimality for each value

of the scaling parameter E.

Recall (Brandt, 1985) that the discretization error, i.e., the difference between

the true solution of the differential problem (in the PDE case) and the exact solution of the

discretized equations, has a relative magnitude clearly determined by the relative

magnitudes of the discretization mesh size and the solution scale. Thus, exactly those
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errors that are slow to converge by relaxation processes on some grid can be

approximated on a coarser grid, where the mesh size is comparable to their scale and

hence their convergence need not be slow.

In the scaling procedures, i.e., cost scaling, the scaling parameter e imposes

a limitation "by design" in the obtainable solution similar to the case of mesh size h in the

conventional grids. So we can consider e to represent a grid.

For a given e, initially very coarse, there is a series of pushes and relabelling

steps to convert the initial 1/2e-optimal pseudoflow into a 1/2e-optimal flow. Each step

uses as its initial state the final state of the previous step. The result is an "image" of a

relaxation mechanism, which is performed by successive local operations.

When the status of 1/2E-optimality is reached, the scaling parameter £ is

halved. The state of the problem, defined in this case by the values of the node potentials

and reduced costs of the arcs, is transferred to the new grid defined by the halved value

of the scaling parameter, now requiring a higher degree of refinement in the process of

obtaining the new approximate solution.

Scaling suggests a more abstract concept of a grid, represented in the scaling

parameter. With the parallel operations described above, cost scaling could be considered

to be an interpretation of a multilevel V-cycle, in which the path from the original to the

coarsest grid it done in a straight step, with the return being traced through all the

intermediate "grids" defined by the successively halved scaling parameter.

It is conceivable, in order to let the coarse correction scheme come into play,

to establish a schematic method similar to the following:

Relax in the finest grid (E = 1) a few times. Let the achieved solution be x(l).

Double the scaling parameter to move into the next coarser grid 2E.
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The vector x" now has to be converted into a pseudoflow (restriction). Call

the resulting pseudoflow x0. The process of obtaining a flow in this level of

optimality is equivalent to the solution of the problem at this level. That could

be done by initiating a new recursive step, so that the problem at this point is

transferred to the 4e grid

The solution at the 2E level can be used as a starting improved point to relax

on the finest level.

A relaxation scheme to apply would consist of the push-relabel operation

described in Chapter VI. Node potentials and reduced costs are essential elements to

update along the grids in the various steps.

G. SUMMARY FOR FURTHER PESEARCH

These points underline the need for investigation of multigrid approaches with other

than the conventional grids. The concept of sampling the state of the problem can be

extended to "expressing the state of the problemn, which does not necessarily involve grid

points, but simply levels. Mechanisms like decomposition or scaling are good for handling

properties such as arc capacities, to be considered throughout the multigrid development

process in optimization. Working on the residual network has not been considered in

multigrid. Integrated in a multigrid-type algorithm, we can apply these techniques to

perform relaxation at one level of coarsening. The scaling-parameter provides a measure

of tracking how fine the relaxation is. Furthermore, it can be used to determine a sufficient

degree of relaxation in the level. The idea of pseudoflows that the scaling methods

develop is an interesting way to force problems to react in a controlled way to local
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in capacity-scaling. All these concepts look promising when integrated in a multigrid

scheme.

Also, the work on residual networks provides the checks for optimality (see Chapter

II), that have been systematically used in network problems. They involve a follow-up of

node potentials and reduced costs. In the transportation problem this is very cheap to

compute.

These conclusions should help in opening new ways to approach the multigrid

design of algorithms or improve specific areas of those already existing. Multigrid concepts

of restriction, interpolation, and the concept of "grid have been moved to a more abstract

area, likely to be productive in the development of new ideas in this field. New

optimization tools that engage and fit in the multigrid philosophy have been presented.

This opens up a broad field of study and experimentation for future researchers.
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APPENDIX A

A. DANTZIG-WOLFE DECOMPOSITION - NUMERICAL EXAMPLE

Consider the following problem

min -2x, x2 - x3 + x4

S.T.

X, + X3 < 2

x, + x- + 2x 4 <3

X,<2
x, + 2x2 5

"x3 + x4  <2

2x 3 + x4 •6
x1, x2, x3, x4  _0

and let the set X consist of the last five constraints. Then

A = = [2j

Denote xw , j = 1,2,..., t the corner points of X, and s the slack vector. The problem is

reformulated as follows:
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mrin T (cx ( ))AL

t

S.t. T. (Ax () Aj ÷ s = b

t

T. I = I .j a O, s a 0

To start, we need a first extreme point of X. Choose x(') = (0, 0, 0, 0). Let the starting

basis consist of s and X, . Note that, at this point, the vector of duals, (w, a) is the zero

vector. We will denote b as the updated right hand side in the simplex tableau. Recall that

with B' being the inverse of the basic submatrix B (initially, a 3x3 identity matrix). The

initial simplex tableau will adopt the form

BASIS INVERSE RHS

z 0 0 0 0

S, 1 0 0 0

s2 0 1 0 2

xl 0 0 1 1

Also recall that cx') = 0.
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Suboolm

The subproblem is stated as

max (w A - O)x + a

s.t. X6 X

which, in terms of the problem data, is expressed

max 2x, + x2 + x3 - x 4

s.t X, 2

x1 +2x2 <5

-x 3 + x4 5 2

2x3 + x4 <6

x15 x2, x3, x4 >0

The solution to this problem is (2, 3/2, 3, 0), with objective function 17/2,

representing the most favourably priced out of the columns corresponding to X's in the

simplex tableau. The lower bound for the objective function is -17/2. (Note: lower bounds

are calculated as the current best overall objective function value, minus the solution to

the last subproblem, since it gives the maximum of the price-outs).

Master Step

The entering column C(") is designed to be X, and is obtained in the standard form

[i Y2 -u

where

5

y 2  =B-1 2] 7
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so

17
2

C 5

7
2

1.

After pivoting, we obtain the following tableau

BASIS INVERSE RHS

z -17/10 0 0 -17/5

S1/5 0 0 2/5

S2  -7/10 1 0 8/5

•, -1/5 0 1 3/5

So far, the best-known feasible solution to the overall problem is given by

x =.Xx, + 2x2 = (4/5, 3/5, 6/5,0)

and the objective function value is -17/5. Also, the vector of duals is (-17/10, 0, 0), as can

be seen on the first row of the tableau. Here the first iteration terminates.

Subproblem

Proceeding as in the first iteration, the next subproblem is expressed by

max 3/10x, + x2 - 7/10x 3 - X4

s.t. x e X (for sake of brevity)

giving x(3) = (0, 5/2, 0, 0), with objective function value 5/2. X3 is introduced. The lower

bound now is -17/5 - 5/2 = -59/10 = -5.9.
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HAIW
The entering column is obtained in similar fashion as the first case

0 o0
0 0

= 1[1 10 2 2~

5

The new tableau looks as

BASIS INVERSE RHS

z -6/5 0 -5/2 -49/10

X2 1/5 0 0 2/5

S2 -1/5 1 -5/2 1/10

X3  -1/5 0 1 3/5

Now the best-known feasible solution is x = X•x 2
1 + ) = (4/5, 21/10, 6/5, 0), and the

objective is -49/J0.

Subproblem

max 4/5x, + x2 - 1/5x 3 - x4 - 5/2

s.t. x e X

which solved yields x(4) = (2, 3/2, 0, 0), with objective value 3/5. So 4 is introduced. The

new lower bound is given by -49/10 - 3/5 = -11/2 = -5.5.
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Proceeding as above, the following tableau is obtained

BASIS INVERSE RHS

z -1 -1 0 -5

X2 1/3 -2/3 5/3 1/3

X4 -1/3 5/3 -25/6 1/6

A, 0 -1 7/2 1/2

the best-known solution is x = 'x2 + Ax')x + .4x(4 = (1, 2, 1, 0).

Subproblem

max Ox, +0x 2 - 0x 3 -3,x 4

s.t. x e X

with solution x) = (0, 0, 0, 0) and objective 0, which is the termination criterion. Also

note that the lower bound is -5 - 0 = -5, equal to the last best objective value (therefore

optimal). The optimal solution is then given by x = (1, 2, 1, 0), with the objective value

equal to -5. It is interesting to plot the successive best objective function values (bold

letters in the RHS column) and the progress of lower bounds. This is done in Figure 35.
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Objective Convergence
0 ,

-2

-6successive L wr bounds

-8 ,

2 3 4

Iterations

Figure 35.- Dantzig-Wolfe Decomposition Example. Convergence of Current
Objective values and successive Lower Bounds (Minimization).
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APPENDIX B

A. AGGREGATION METHOD - NUMERICAL EXAMPLE

This example is from Balas (1965). The original example has been slightly modified.

Figure 36 presents the data of the original problem. The tableau is constructed as

described in Chapter III, with costs inside the cells. Rows are associated with supply

1 2 3 4 5 6 7 8 9 10 11 12 a A,

I 95 103 65 58 '140 133 145 170 180 168 198 188 25I I I I I
2 80 88 50 67 '125 137 130 155 165 153 183 195 30 75I I I I I
3 70 78 40 57 115 127 120 '145 155 143 '173 185 20

4 30 38 60 77 55 67 7 70 ' 95 95 33 ' 113 Ii1 470 38 II I I I leo

5 45 53 45 62 ' 40 52 ' 85 ' 110 110 98 ' 119 107 53

6 58 66 '88 105 '80 68 '42 '67 67 55 '85 83 12I I I I I
7 70 72 '100 117 '92 80 '30 '55 65 67 '83 95 36 65I I I I I
8 71 79101 118 '67 55 55 '64 54 42 '72 70 17

9 137 145 '62 45 '52 40 '150 '135 125 137 '107 95 55
I I I I I 90

10 122 130 77 60 37 25 '135 '120 110 122 '92 80 35

22 8 '18 42 55 35 50 17 30 18 10 25 330
I I I I I-

B30 0 , 9 ,O
B 60 0 o 65 ' 35 330

Figure 36.- Balas' Aggregation. Tableau for the Original Problem.

nodes and columns with destinations.

In the figure, dashed costs lines represent aggregation of nodes. Boldface costs

correspond to the cost of each aggregated group, taken to be the minimum of each group.
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Supplies and demands are represented in the last two columns and rows, respectively.

The supplies (demands) corresponding to the aggregated nodes are placed in the last

column (row). They are obtained adding the supply (demand) of the cells forming the

aggregated node.

A visualization of the problem is presented in Figure 37. There, dark nodes are

destinations. The circles around a group represent the aggregated nodes. The numbers

close to each arc are costs. The numbers inside the small circles are the node indices.

The figure is illustrative, and, although more than one path could be found between two

nodes, each path with different cost, the reader should interpret that the paths giving the

costs of the tableau in Figure 36 must be chosen.

Problem II is constructed using the bold-faced data in Figure 36, along with the

aggregated demands/supplies. For brevity, the corresponding tableau is not included.

Notice that the indices i, j of the aggregated nodes, mentioned in Chapter V, now run

along the groups of cells inside each of the dashed rectangles in Figure 36. Solving

Problem l1 the following solution is obtained (expressed in matrix form):

[15 60 0 0 0 0
= -5 0 35 50 01

0 055 0 0 35

With the resulting solution, Problem III is formed as follows. Pick the arouos of cells

identified by the indices of those entries in X (i.e. (1,1), (1,2), (2,1), (2,3), (2,4), (3,5), (4,3)

and (4,6)). Transfer the whole groups (original problem) into a new tableau, not shown,
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f . 3o

L? 40

Figur 37.- "Map" of Origins, Destinations and their aggregation.
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In which the met of the entries will be given a cost value to force them not to appear in

the optimal solution. Solve the problem so constructed. The solution is presented in Figure

38. The blank "blocks" correspond to those entries equal to zero in the solution X to

Problem II. The last two columns and rows now represent the computed dual values for

1 2 3 4 5 6 7 8 9 10 II 12 uh U,

I 25 ' ' ' 41I I I II
2 '13 17 ' s o 50 sI I I I. I
3 7 9 . ' U ' 40

4 is ' , '32 ' ' 0I I I I I IU

5. '35 '15 ' I5

6 U I I i j j U -38I I I I I
7 ' ' ' '17 19 ' -40 65II I II
8 ' ' ' ' 17 ' -51

9 ' '20 35 ' ' ' 27I I I I I 9
10 1 ' ' ' ' I0 25 12I Ii I I - -

V, 30 38 0 17 '25 13 '70 '95 105 93 '80 68I I I I I-

V 3 17 25 ,70 105 so 330

Figure 3M. Balas' Aggregation. Solution to Problem IIL.

the individual and aggregated nodes, respectively.

Next the D', are computed. Recall that those are the values of the slack variables

for those blocks not in the optimal solution of Problem I1. They are represented in matrix

form as
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0 0 40 0 -1243'
0 13 0 0 -37 12

D1 a 58 109 680 0 28
57 1 0 38 -220

If all the entries in D', were nonnegative, the solution to Problem III would be

optimal. Since that is not the case, we need to compute the corresponding values of the

slack for all those original cells in the groups affected (i.e. groups (1,5), (2,5), (4,5)). The

result of those computations is expressed, in compact form

Dj- = 34 34 341 D2!5 = -o 10 _10 D, = 113 -7 171

i0 i0 i0 -10 -10 13 -7 17
10 10101 D 5 :

Since not all the entries in the above matrices are nonnegative, those blocks of cells

must be included in a new iteration to form a new Problem Ill. The associated tableau is

shown in Figure 39. Solving the tableau in Figure 39, the resulting solution is optimal.
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I 2 3 4 5 6 7 8 9 10 II 12 a, A,

1 95 103 '65 58 ' ' ' 25l l I I I
2 80 88 '50 67 ' ' ' ' 30 75I I I I I
3 70 78 '40 57 ' ' ' ' 20-- - - -- - - - - - - - - - -- - - - - -- - - --I- - --- .. .----- --.. .. . .. .. .. .
4 30 38 ' '55 67 '70 '95 95 33 6 47I I I I I IW

5 45 53 ' '40 52 '85 '110 110 98 ' 53

6 ' ' ' '67 67 55 ' 12I I I I I
7 I ' '55 65 67 ' 36 65

I I I I I
8 ' ' '64 5U 42 ' 17

9 ' '52 40 M135 125 137 107 95 55I I I I I 9o
10 '37 2.5 '120 110 122 '92 90 35I 'I I I I -

b 22 8 I18 42 55 35 '50 '17 !n 19 '10 25 3M0
I i I I I -

60 o90 50 65 35 330

Figure 39.- Tableau for Second Iteration of Problem IlI.
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APPENDIX C

A. MATHEMATICA FILE MGOOI.M

This demonstration file shows how the oscillatory components of the

error are "quickly" eliminated by a Jacobi iteration technique when

solving a suitable system of linear equations.

The system used here is the same system considered in Briggs (1987),

i.e., that yielded by the steady-state temperature distribution in a

long uniform rod:

- u" + sigma u = f(x);

u(O) = u(1) = 0;

sigma >= 0;

The domain of the problem is partitioned into 'NN' subintervals. The

length of each subintervals is 'h'. The linear system of equations has

the form A x = f

For generality, the right hand side vector f is a random vector of

integer values.

The initial value of the solution is defined as a sum of Fourier
"modes", affected by different coefficients. The output is a Table of

graphics ("figure"), each representative of the status of the error in

the Jacobi process. Applying "ShowAnimation [figure]" to the Table,

a movie representation of the error progress is obtained. Limitations irr

the computer system may force to animate only a certain range of the

graphics array.

The residuals 'r = f - A x' are also obtained. A similar graphic

for them can be obtained by slight modification of the code.

Reference: "A Multigrid Tutorial", William Briggs, SIAM, 1987.

>> Javier Nieto, 1993')
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NN =48; Nlterations = 200; h = 1/NN//N; sigma = 5; jump = 3;

A = ZeroMatrix[NN+1];

For 0=1i, i<= Length[A], ++i, Afli,i]] = 2 + sigma hA2];

For [i=1, ik= Length(A]-1, .+i, Af[i, i+1]) = A[[i+1, i]] = -1];

A =A/hA2

f =Table(Random~lnteger, (-5, 9)), {NN+1 1];

c =Table[Random(Real, (-1, 1)], (NN+1 )];

TheRoots = LinearSolve(N[A],N[ffl; (True solution)

Print ["1 N, ColumnForrn~q]; Print I"1

Print ("TheRoots = ", ColumnForm(TheRoots]]; Print [" 1;

Diag = Table [AIfi,i]], (i, 1,Length[A])]; (0Diagonal elements of A 0

DD = DiagonalMatrix [Diag]; (Diagonal Matrix 0

LL =Table [Iffi > j, -A([i,j]], 0],

{i, 1,Length[AJ),

(1,1 ;Length[A])]; (0Lower Triangular Matrix ~

UU =Table [lf~i < j, -A[(i,j]], 0],

{i,1 ,Length(A]),

0,1 ,Length[A])]; (0Upper Triangular Matrix 0

DDinv =DiagonalMatrix (1/Diag]; (* Inverse of DD 0

PP =Dot (DDinv, (LL +, UU)]; (* Iteration Matrix 0

(0Initial value of the solution 0

xlnit = Table[ Sum~k SinOj k Pi / NN//N], {k,1,10,2)], (j,1,NN.1 1];

rlnit = f - Dot(A, xlnit];

Print ("Initial x = ColumnForm~xlnitfl; Print ( N;
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Print ("initial r =,ColumnFormprtnitfl; Print (OutFile,

errors = (TheRoots, - xlnit); (Initial value of the error)

residuals = (rinit);

x = xlnit; r = rinit; (first values in the loop'

For [ i = 1, i <= Niterations, ++i, ('Iterative loop)

CompoundlExpression
x =Dot[Dot[DDinv, (LL + UU)], x) + Dot4DDinv, fl;

r =f - Dc1![A, x];

residuals = AppendTo [residuals, r];

errors = AppendTo [errors, TheRoots - x

Print ["Iteration #: *,i];

B. MATHEMATICA FILE MG002.M

figure = Table [ ListPlofferrors[[i]],

PlotJoined ->True,

PlotRange ->(-2, 2),

PlotLabel ->StringForm [*error ",i],

DisplayFunction -> Identity], (i, 1, Nlterations, jump)]

fig8lfirst = ListPlot [TheRoots - xlnit,

PlotJoined ->True,

PlotRange *> -8, 8),

PlotLabel ->StringForm ("error 1 "],
DisplayFunction -> Identity];

fig8l = {fig8lfirst, figure(f4J], figure[[8]], figure[[12]], figure[[16]],

figure[[25]], figureff35]], figure[[Length[figure]]]);
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figure2 = Table [ ListPlot[residualsffl]],

PlotJoined -> True,

PlotRange -> (400, 400),

PlotLabel -> StringForm [*residual ", i],

DisplayFunction -> Identity], {i, 1, Nlterations, jump)]

fig82first = ListPlot [f - Dot[A, xtnit],

PlotJoined -> True,

PlotRange -> (-1500, 1500).

PlotLabel -> StringForm [(residual 1"],

DisplayFunction -> Identity];

fig82 = (fig82first, figure2[[4]], figure2[[81], figure2{[12]], figure2[[16]],

figure2[[25]], figure2[[35]], figure2[[Length[figure2n]]);

(* The following lines instruct Mathematica to show a picture using

several representations of the error term and residuals. The last

line performs a movie-representation of the error.

Show (GraphicsArray(Partition[figure8l, 2fl]

Show [GraphicsArray[Partition[figure82, 2]]]

ShowAnimation [figuref[Range[1,20]]]] I

C. PROBLEM DATA

f=9 5 -2 -2 4 1 3 -5 -1 -3 3 9 -3 3 4 9 7 9 6 5 3 -4 7 -2 8

9 5-2 5-5 2 4 8 2 9 8 5-2 5 9-2

-5 0 2 0 4 7 -1 8

True solution for 'x':

0.02065783515014781

0.03745425067171521

0.05216180823033061
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0.06785061971305696

0.0845547320198134

0.0997062287276545

0.1146400740221441

0.1285206208661609

0.1448502141964325

0.1619281803873733

0.1806596365531132

0.1984810658884562

0.2128269767035918

0.2289368349508098

0.2442414345933205

0.2583399609602091

0.2690928709229314

0.2773915553451219

0.2823859679690162

0.28538903069701

0.2868412883700927

0.287613948144673

0.2907468812442201

0.291472581013134

0.2936988723207048

0.2930903087504995

0.28921154185727

0.2837902652892516

0.2798529085677812

0.2743527326374735

0.2716180791304241

0.2686048190242655

0.2644383575705032

0.2573735418579965
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0.2499992069220913

02392611549873191

0.2255701107673631

0.2101984461280655

0.19615099686665

0.1803590836227403

0.1610523246401646

0.1429631271259921

0.1273543183425618

0.1120218861180346

0.0960645013894233

0.0803155899711188

0.06300486342688363

0.04279267174251583

0.0231073738770337

Initial guess for 'x':

10.35402435050376

18.19077280899915

21.71171356903935

20.33521033480991

14.82383446890182

7.008352827725206

-0.7972048465103275

-6.5

-8.83013611253079
-7.656495855460165

-3.930386807407886

0.7071067811865453

4.511178065381282

6.212778468659391
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5.401937904648413

2.59807621135332

-1.000246934522234

-3.985346991432006

-5.258443033643013

-4.413527006719259

-1.857217543664439

1.36939385352089

3.995271049498531

5.

3.995271049498533

1.369393853520896

-1.857217543664434

-4.41352700671926

-5.258443033643003

-3.985346991432011

-1.000246934522246

2.598076211353307

5.401937904648421

6.212778468659399

4.511178065381289

0.7071067811865533

-3.930386807407885

-7.656495855460135

-8.8301361125308

-6.499999999999997

-0.7972048465103328

7.008352827725192

14.82383446890179

20.33521033480992

21.71171356903935
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18.19077280899916

10.3540243505038

2.021494950599223 I0O-14

-10.35402435050376
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